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Symmetry in everyday language refers 

to a sense of harmonious and beautiful 

proportion and balance.
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Types Of Symmetry

 Line Symmetry

 Rotational Symmetry
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Line  Symmetry

An object has line symmetry or

reflective symmetry when it is the

same on both sides of a line drawn

down the middle.
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Rotational  Symmetry

An object is said to have rotational symmetry if

it remains the same after being rotated around a

central point.
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Order Of Rotational Symmetry

The number of positions a figure can be rotated to, without

bringing in any changes to the way it looks originally, is called

its order of rotational symmetry.
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SYMMETRIES OF A SQUARE
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Composition Of Motions

* =
* =
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Observations
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Dihedral Group

• The analysis carried out  for a square can similarly be 

done for an equilateral triangle or regular pentagon or 

any regular n-gon (n ≥ 3). The corresponding group is 

denoted by Dn and is called the dihedral group of order 

2n.

• The dihedral group consists of n rotations

{ R0, R360

n

, R2×360

n

… .R n−1 ×360

n

} and n reflections.

• The set of rotations is a cyclic subgroup of 𝐃𝐧 of order 

n and is generated by R360

n

.
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Applications



ABELIAN GROUPS



 A group is a set G together with a binary operation ∗

that satisfies the following properties

1) ∗ is associative

2) ∃ e ∈ G, such that ∀𝑔 ∈ G, e ∗ g = g ∗ e = g

3) ∀𝑔 ∈ G,  ∃ 𝑔′ ∈ G  such that 𝑔′ ∗ g = g ∗ 𝑔′ = e

 An Abelian group is a group whose binary operation is 

commutative.

Abelian Groups, Diana Mary George, St.Mary’s College, Thrissur.

Preliminaries
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.

Abelian group is named 

after Niels Henrik Abel, a 

Norwegian mathematician 

who made pioneering 

contributions in the field 

of Group theory.
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Examples for Abelian Group

• (ℤ ,+) set of integers with respect to addition.

• Every cyclic group is Abelian.

• (ℤ𝑛, +𝑛) is a cyclic group with n elements.

• Every finite cyclic group with n elements is isomorphic to

(ℤ𝑛, +𝑛).
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Cartesian product of Abelian groups

Let 𝐺1, 𝐺2, … , 𝐺𝑛 be Abelian groups. Then the Cartesian

product

𝐺1 × 𝐺2 ×⋯× 𝐺𝑛={(𝑎1,𝑎2, … , 𝑎𝑛): 𝑎𝑖 ∈ 𝐺𝑖}

1) (𝐺1 × 𝐺2 ×⋯× 𝐺𝑛,∗) is a group with respect

to the operation ∗ defined by

(𝑎1,𝑎2, … , 𝑎𝑛) ∗(𝑏1,𝑏2, … , 𝑏𝑛)=(𝑎1𝑏1, 𝑎2𝑏2,…, 𝑎𝑛𝑏𝑛)

2) (𝐺1 × 𝐺2 ×⋯× 𝐺𝑛,∗) is also Abelian.



THEOREM 1:

The group ℤ𝑚 × ℤ𝑛 is cyclic and is isomorphic to 

ℤ𝑚𝑛 if and only if m and n are relatively prime.

FUNDAMENTAL THEOREM OF FINITELY 

GENERATED ABELIAN GROUPS

Every finitely generated abelian group G is 

isomorphic to a direct product of cyclic groups in 

the form

ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 ×⋯× ℤ(𝑝𝑛)𝑟𝑛 × ℤ ×⋯× ℤ
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DECOMPOSABLE GROUP

A group G is decomposable if it is isomorphic to a direct 

product of two proper nontrivial subgroups. Otherwise G 

is indecomposable.

THEOREM 2:

The finite indecomposable abelian groups are exactly the 

cyclic groups with order a power of a prime.
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THEOREM 3:

If m divides the order of a finite abelian group G 

then G has a subgroup of order m.

THEOREM 4:

If m is a square free integer then every abelian 

group of order m is cyclic.
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OBSERVATIONS

• If G is an abelian group and H be the subset of G 

consisting of the identity e together with all 

elements of G of order 2.Then H is a subgroup of 

G.

• A finite abelian group is not cyclic if and only if 

it contains a subgroup isomorphic to Z𝑝 × Z𝑝 for 

some prime p.

• If a finite abelian group has order a power of a 

prime p then the order of every element in the 

group is a power of p.
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NORMAL SUBGROUP

Let H be a subgroup of G then H is called a normal 

subgroup of G if aH=Ha, ∀ 𝑎 ∈ 𝐺.

OBSERVATIONS

• Every subgroup of  an abelian group is normal.

• For a prime number p, every group G of order 

𝑝2 is abelian.
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