Ideals and Factor Rings

Diana Mary George
Assistant Professor
Department of Mathematics
St. Mary's College
Thrissur-680020
Kerala

Ideal

A subring A of a ring R is called a (two-sided) ideal of R if for every $r \in R$ and every $a \in A$ both $r a$ and ar are in A.

Theorem 1 (Ideal Test):
A nonempty subset A of a ring R is an ideal of R if 1. $a-b \in A$ whenever $a, b \in A$.
2. $r a$ and ar are in A whenever $a \in A$ and $r \in R$.

EXAMPLE 1:

For any ring $R,\{0\}$ and R are ideals of R . The ideal $\{0\}$ is called the trivial ideal.

EXAMPLE 2:

For any positive integer n, the set $n Z=\{0, \pm n, \pm 2 n, \ldots\}$ is an ideal of Z .

EXAMPLE 3:

Let R be a commutative ring with unity and let $a \in R$.
The set $\langle a\rangle=\{r a \mid r \in R\}$ is an ideal of R called the principal ideal generated by a.

EXAMPLE 4:

Let R be a commutative ring with unity and let $a_{1}, a_{2}, \ldots, a_{n} \in$ R. Then $I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{r_{1} a_{1}, r_{2} a_{2}, \ldots, r_{n} a_{n} \mid r \in R\right\}$ is an ideal of R called the ideal generated by $a_{1}, a_{2}, \ldots, a_{n}$.

Existence of Factor Rings

Let R be a ring and let A be a subring of R.
The set of cosets $\{r+A \mid r \in R\}$ is a ring under the operations
$(\mathrm{s}+\mathrm{A})+(\mathrm{t}+\mathrm{A})=\mathrm{s}+\mathrm{t}+\mathrm{A}$ and
$(s+A)(t+A)=s t+A$ if and only if A is an ideal of R.

EXAMPLE 5:

$Z / 4 Z=\{0+4 Z, 1+4 Z, 2+4 Z, 3+4 Z\}$.
To see how to add and multiply, consider $2+4 Z$ and $3+4 Z$.
$(2+4 Z)+(3+4 Z)=5+4 Z=1+4+4 Z=1+4 Z$,
$(2+4 Z)(3+4 Z)=6+4 Z=2+4+4 Z=2+4 Z$.
One can readily see that the two operations are essentially modulo 4 arithmetic.

EXAMPLE 9:

$2 Z / 6 Z=\{0+6 Z, 2+6 Z, 4+6 Z\}$. Here the operations are essentially modulo 6 arithmetic. For example, $(4+6 Z)+(4+6 Z)=2+6 Z$ and $(4+6 Z)(4+6 Z)=4+6 Z$.

EXAMPLE 10:

Consider the factor ring of the Gaussian integers $R=Z[i] /<2-i\rangle$. The elements of R have the form $a+b i+\langle 2-i\rangle$, where a and b are Similarly, all the elements of R can be written in the form $a+$ $<2-i>$ where a is an integer. We can show that every element of R is equal to one of the following cosets: $0+\langle 2-i\rangle, 1+\langle 2-i\rangle$, $2+\langle 2-i\rangle, 3+\langle 2-i\rangle, 4+\langle 2-i\rangle$. In fact R is same as Z_{5}.

EXAMPLE 11:

Let $\mathbf{R}[\mathrm{x}]$ denote the ring of polynomials with real coefficients and let $\left.<x^{2}+1\right\rangle$ denote the principal ideal generated by $x^{2}+1$
$<x^{2}+1>=\left\{f(x)\left(x^{2}+1\right) \mid f(x) \in \mathbf{R}[x]\right\}$.
Then $\mathbf{R}[\mathrm{x}] /<\mathrm{x}^{2}+1>=\left\{\mathrm{g}(\mathrm{x})+\left\langle\mathrm{x}^{2}+1>\right| \mathrm{g}(\mathrm{x}) \in \mathbf{R}[\mathrm{x}]\right\}$
If $g(x) \in \mathbf{R}[x]$, then $g(x)=q(x)\left(x^{2}+1\right)+r(x)$, where $q(x)$ is the quotient and $r(x)$ is the remainder upon dividing $g(x)$ by $x^{2}+1$. In particular, $r(x)=0$ or the degree of $r(x)$ is less than 2 , so that $\mathrm{r}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ for some a and b in \mathbf{R}. Thus,
$\mathrm{g}(\mathrm{x})+\left\langle\mathrm{x}^{2}+1>=\mathrm{q}(\mathrm{x})\left(\mathrm{x}^{2}+1\right)+\mathrm{r}(\mathrm{x})+\left\langle\mathrm{x}^{2}+1\right\rangle=\mathrm{r}(\mathrm{x})+\left\langle\mathrm{x}^{2}+1\right\rangle\right.$ $=\mathrm{ax}+\mathrm{b}+\left\langle\mathrm{x}^{2}+\mathrm{l}\right\rangle$
$\therefore \mathbf{R}[\mathrm{x}] /<\mathrm{x}^{2}+1>=\left\{\mathrm{ax}+\mathrm{b}+\left\langle\mathrm{x}^{2}+1\right\rangle \mid \mathrm{a}, \mathrm{b} \in \mathbf{R}\right\}$

Prime Ideals

A prime ideal A of a commutative ring R is a proper ideal of R such that $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{ab} \in \mathrm{A}$ imply $\mathrm{a} \in \mathrm{A}$ or $\mathrm{b} \in \mathrm{A}$.

Maximal Ideals

A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever B is an ideal of R and $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{R}$, then $\mathrm{B}=\mathrm{A}$ or $\mathrm{B}=\mathrm{R}$.

EXAMPLE 12

Let n be an integer greater than 1 .
In the ring of integers, the ideal nZ is prime if and only if n is prime $\{0\}$ is also a prime ideal of Z .

EXAMPLE 13

The lattice of ideals of Z_{36} shows that only $<2>$ and $<3>$ are maximal ideals

EXAMPLE 15:

The ideal $\left\langle\mathrm{x}^{2}+1\right\rangle$ is maximal in $\mathbf{R}[\mathrm{x}]$.
To see this, assume that A is an ideal of $\mathbf{R}[\mathrm{x}]$ that properly contains $\left\langle\mathrm{x}^{2}+1\right\rangle$. We will prove that $\mathrm{A}=\mathbf{R}[\mathrm{x}]$ by showing that A contains some nonzero real number c . (This is the constant polynomial $\mathrm{h}(\mathrm{x})=$ c for all x .) Then $1=(1 / \mathrm{c}) \mathrm{c} \in \mathrm{A}$ and therefore, $\mathrm{A}=\mathbf{R}[\mathrm{x}]$.
To this end, let $\mathrm{f}(\mathrm{x}) \in \mathrm{A}$, but $\mathrm{f}(\mathrm{x}) \notin\left\langle\mathrm{x}^{2}+1\right\rangle$.
Then $f(x)=q(x)\left(x^{2}+1\right)+r(x)$, where $r(x) \neq 0$ and the degree of $r(x)$ is less than 2. It follows that $\mathrm{r}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$, where a and b are not both 0 , and $a x+b=r(x)=f(x)-q(x)\left(x^{2}+1\right) \in A$
Thus, $a^{2} x^{2}-b^{2}=(a x+b)(a x-b) \in A$
So $0 \neq a^{2}+b^{2}=\left(a^{2} x^{2}+a^{2}\right)-\left(a^{2} x^{2}-b^{2}\right) \in A$

Theorem 2

Let R be a commutative ring with unity and let A be an ideal of R. Then R / A is an integral domain if and only if A is prime.

Theorem 3

Let R be a commutative ring with unity and let A be an ideal of R. Then R / A is a field if and only if A is maximal.

EXAMPLE 17

The ideal $\langle x\rangle$ is a prime ideal in $Z[x]$ but not a maximal ideal in $Z[x]$. To verify this, we begin with the observation that $\langle x\rangle=\{f(x) \in Z[x] \mid f(0)=0\}$.Thus, if $g(x) h(x) \in\langle x\rangle$ then $g(0) h(0)=0$. And since $g(0)$ and $h(0)$ are integers, we have $g(0)=0$ or $h(0)=0$. To see that $\langle x\rangle$ is not maximal, we simply note that $\langle x\rangle \subset\langle x, 2\rangle \subset Z[x]$

FACTORISATION OF POLYNOMIALS OVER A FIELD

Preliminaries

Let R be a ring with unity $1 \neq 0$. An element u in R is a unit of R if it has a multiplicative inverse in R .
If every non zero element of R is a unit then R is a division ring.
A field is a commutative division ring. Let F be a field. Let $\mathrm{F}[\mathrm{x}]$ denote set of all polynomials with indeterminate x of finite degree with coefficients from field $\mathrm{F} . \mathrm{F}[\mathrm{x}]$ is a ring.

DIVISION ALGORITHM IN F[x]

Let $\mathrm{f}(\mathrm{x})=\sum_{i=0}^{n} a_{i} x^{i}, \mathrm{~g}(\mathrm{x})=\sum_{i=0}^{m} b_{i} x_{i} \in \mathrm{~F}[\mathrm{x}]$ then there are unique polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ in $\mathrm{F}[\mathrm{x}]$ such that $f(x)=g(x) q(x)+r(x)$ where either $r(x)=0$ or the degree of $r(x) \leq$ degree of $g(x)$

FACTOR THEOREM

An element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $x-a$ is a factor of $f(x)$ in $F[x]$.

COROLLARY 1:

A nonzero polynomial $f(x) \in F[x]$ of degree n can have atmost n zeros in a field F .

COROLLARY 2:

If G is a finite subgroup of the multiplicative group $(\mathrm{F}-\{0\}, *)$ of a field F , Then G is cyclic.

IRREDUCIBLE POLYNOMIALS

A nonconstant polynomial $f(x) \in F[x]$ is irreducible over F if $f(x)$ cannot be expressed as a product $g(x) h(x)$ of two poynomials $g(x)$ and $h(x)$ in $F[x]$ both of lower degree than the degree of $f(x)$.

THEOREM 1:

Let $f(x) \in F[x]$ be of degree 2 or 3 . Then $f(x)$ is reducible over F if and only if it has a zero in F .

THEOREM 2:

If $f(x) \in \mathbb{Z}[x]$ then $f(x)$ factors into a product of two polynomials of lower degrees r and s in $\mathbb{Q}[x]$ if and only if it has such a factorization with polynomials of the same degrees r and s in $\mathbb{Z}[x]$.

COROLLARY 3:

If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is in $\mathbb{Z}[x]$ with $a_{0} \neq 0$ and if $f(x)$ has a zero in \mathbb{Q} then it has a zero m in \mathbb{Z} and m must divide a_{0}.

EISENSTEIN CRITERION

Let $p \in \mathbb{Z}$ be a prime. Suppose that $f(x)=a_{n} x_{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{0}$ is in $\mathbb{Z}[x]$ and $a_{n} \neq 0 \bmod p$ but $a_{i}=0 \bmod \mathrm{p}$ for all $i<n$ with $a_{0} \neq 0 \bmod p^{2}$. Then $f(x)$ is irreducible over \mathbb{Q}.

COROLLARY 4:

The polynomial

$$
\Phi_{p}(\mathrm{x})=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1 \text { is }
$$ irreducible over \mathbb{Q} for any prime p .

Factorisation of Polynomials over a field, Diana Mary George, St.Mary's College, Thrissur.

THEOREM 4:

Let $p(x)$ be an irreducible polynomial in $F[x]$. If $p(x)$ divides $r(x) s(x)$ for $r(x), s(x) \in F[x]$ then either $p(x)$ divides $r(x)$ or $p(x)$ divides $s(x)$.

COROLLARY 5:

If $p(x)$ is irreducible in $F[x]$ and $p(x)$ divides the product $r_{1}(x) r_{2}(x) \ldots r_{n}(x)$ for $r_{i}(x) \in F[x]$ then $p(x)$ divides $r_{i}(x)$ atleast one i.

THEOREM 5:

If F is a field then every non constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials the irreducible polynomials being unique except for order and for unit factors in F .
Thank you

Proof Existence :

The set of cosets forms a group under addition. The multiplication is well-defined if and only if A is an ideal of R. To do this, suppose that A is an ideal and let $\mathrm{s}+\mathrm{A}=\mathrm{s}^{\prime}+\mathrm{A}$ and $\mathrm{t}+\mathrm{A}=\mathrm{t}^{\prime}+\mathrm{A}$. Then we must show that $s t+A=s^{\prime} t^{\prime}+A$.
$\mathrm{s}=\mathrm{s}^{\prime}+\mathrm{a}$ and $\mathrm{t}=\mathrm{t}^{\prime}+\mathrm{b}$, where $\mathrm{a}, \mathrm{b} \in \mathrm{A}$.
Then $s t=\left(s^{\prime}+a\right)\left(t^{\prime}+b\right)=s^{\prime} t^{\prime}+a t^{\prime}+s^{\prime} b+a b$ and so

$$
s t+A=s^{\prime} t^{\prime}+a t^{\prime}+s^{\prime} b+a b+A=s^{\prime} t^{\prime}+A .
$$

Thus multiplication is well-defined when A is an ideal.
On the other hand, suppose that A is a subring of R that is not an ideal of R. Then there exist elements $a \in A$ and $r \in R$ such that $a r \notin A$ or $\mathrm{ra} \notin \mathrm{A}$. For convenience, let ar $\notin \mathrm{A}$. Consider the elements $a+A=0+A$ and $r+A$. Clearly, $(a+A)(r+A)=a r+A$ but $(0+A)(r+A)=0 . r+A=A$. Since $\operatorname{ar}+A \neq A$, the multiplication is not well-defined and the set of cosets is not a ring

Proof Theorem 2:

Suppose that R/A is an integral domain and $a b \in A$.
Then $(a+A)(b+A)=a b+A=A$, the zero element of the ring R/A. So,either $a+A=A$ or $b+A=A$; that is, either $a \in A$ or $b \in A$. Hence A is prime.
To prove the other half, we first observe that R / A is a commutative ring with unity for any proper ideal A.
We show that when A is prime, R/A has no zero-divisors. So, suppose that A is prime and $(\mathrm{a}+\mathrm{A})(\mathrm{b}+\mathrm{A})=0+\mathrm{A}=\mathrm{A}$.
Then $a b \in A$ and, therefore, $a \in A$ or $b \in A$.
Thus, one of $a+A$ or $b+A$ is the zero coset in R/A.

Proof Theorem 3:

Suppose that R / A is a field and B is an ideal of R that properly contains A. Let $b \in B$ but $b \notin A$. Then $b+A$ is a nonzero element of R / A and, therefore, there exists an element $c+A$ such that $(b+A)(c+A)=1+A$, the multiplicative identity of R / A. Since $b \in B$, we have $b c \in B$. Because $1+A=(b+A)(c+A)=b c+A$, We have $1-b c \in A \subset B$. So, $1=(1-b c)+b c \in B$. Therefore $B=R$. This proves that A is maximal.

Now suppose that A is maximal and let $b \in R$ but $b \notin A$. It suffices to show that $b+A$ has a multiplicative inverse. All other properties
for a field follow trivially. Consider $B=\{b r+a \mid r \in R, a \in A\}$. This is an ideal of R that properly contains A. Since A is maximal, we must have $B=R$. Thus, $1 \in B$, say, $1=b c+a^{\prime}$, where $a^{\prime} \in A$. Then $1+\mathrm{A}=\mathrm{bc}+\mathrm{a}^{\prime}+\mathrm{A}=\mathrm{bc}+\mathrm{A}=(\mathrm{b}+\mathrm{A})(\mathrm{c}+\mathrm{A})$. When a commutative ring has a unity, it follows that a maximal ideal is a prime ideal.

