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Ideal

A subring A of aring R is called a (two-sided) ideal of R if for
every r € R and every a € A both ra and ar are in A.

Theorem 1 (ldeal Test):
A nonempty subset Aof aring R is an ideal of R if

1.a-b e Awhenevera, b € A.
2.raand ar are iIn Awhenevera€e Aandr € R.

EXAMPLE 1:

For any ring R, {0} and R are ideals of R. The ideal {O}is called the
trivial ideal.
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EXAMPLE 2:

For any positive integer n, the set nZ = {0, +n, + 2n,...} is an
Ideal of Z.

EXAMPLE 3:

Let R be a commutative ring with unity and let a € R.
Theset<a>={ra|r eR}isan ideal of R called the principal ideal
generated by a.

EXAMPLE 4:

Let R be a commutative ring with unity and let a;,a,,..., a, €
R. Thenl=<aj,a,,...,a,> ={rjay,r,a,,..., rpay|r € R} isan
Ideal of R called the ideal generated by a,,a,,..., a,.
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Existence of Factor Rings

Let R be aring and let A be a subring of R.

The set of cosets { r + A|r € R} Is a ring under the operations
(s+A)+t+A)=s+t+Aand
(s+A)(t+A)=st+Aifandonly if Ais an ideal of R.

EXAMPLE 5:

2142 ={0+4Z,1+4Z,2+4Z,3 + 4Z}.

To see how to add and multiply, consider 2 + 4Z and 3 + 4Z.
(2+42)+(3+42)=5+4Z=1+4+4Z2=1+4Z,
(2+42)(3+42)=6+4Z2=2+4+42=2+4Z.

One can readily see that the two operations are essentially modulo 4
arithmetic.
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EXAMPLE 9:

27/6Z = {0+ 6Z,2 + 6Z, 4 + 6Z}. Here the operations are
essentially modulo 6 arithmetic. For example,
(4+62)+(4+6Z)=2+6Zand (4 +6Z)(4 + 6Z) =4 + 6Z.

EXAMPLE 10:

Consider the factor ring of the Gaussian integers R = Z[i}/<2 -1>.
The elements of R have the form a + bi + <2 —i>, whereaand b
are Similarly, all the elements of R can be written in the form a +
<2 —I> where a Is an integer. We can show that every element of
R is equal to one of the following cosets: 0 + <2 —i>,1 + <2 — >,
2+<2—-i>3+<2-i> 4+<2—-i> InfactRissame as Zc
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EXAMPLE 11:

Let R[x] denote the ring of polynomials with real coefficients and let
< x%+1> denote the principal ideal generated by x?+1

< x%+1> = { f(x)(x*+1) | f(X) € R[x]}.
Then R[x]/< x%+1> = { g(X) + < x*+1> | g(X) € R[x]}

If g(x) € R[x], then g(x) =q(x)(x?+1) + r(x), where g(x) is the
quotient and r(x) is the remainder upon dividing g(x) by x%+1.

In particular, r(x) = 0 or the degree of r(x) is less than 2, so that
r(x) =ax + b for some aand b in R. Thus,

g(x) +< x2+1> = q(X)(x?+1) + r(x) + < x?+1> =r(X) + < x*+1>

=ax + b +< x%+1>
~ RIX)/I< x?+1>={ax+b + <x?+1>jabeR}
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Prime ldeals

A prime ideal A of a commutative ring R is a proper ideal of R such
thata,be Randab e Aimplyae€ Aorb eA.

Maximal Ideals

A maximal ideal of a commutative ring R is a proper ideal of R such that,
whenever B isan ideal of Rand AcBc R, thenB=AorB=R.

EXAMPLE 12

Let n be an integer greater than 1.
In the ring of integers, the ideal nZ is prime if and only if n is prime
{0} is also a prime ideal of Z.
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EXAMPLE 13
The lattice of ideals of Z54 shows that only <2 > and <3> are maximal ideals

<2> <3>
<4> <6> <9>
<12> 8>
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EXAMPLE 15:

The ideal < x?+1> is maximal in R[x].

To see this, assume that A is an ideal of R[x] that properly contains
< x%+1>. We will prove that A = R[x] by showing that A contains
some nonzero real number c. (This is the constant polynomial h(x) =
c for all x.) Then 1 =(1/c)c € A and therefore, A = R[X].

To this end, let f(x) € A, but f(x) ¢ < x?+1>.

Then f(x) = g(x)(x%+1) + r(x),where r(x) = 0 and the degree of r(x)
IS less than 2. It follows that r(x) = ax + b, where a and b are not
both 0, and ax + b = r(x) = f(X) - q(X)(x*+1) € A

Thus, a®x?- b?=(ax + b)(ax - b) € A

So 0+ a®+b?= (a’x* + a%) — (a’x* —b%) €A
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Theorem 2

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.

Theorem 3

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is a field if and only if A is maximal.

EXAMPLE 17

The ideal <x > is a prime ideal in Z[x] but not a maximal ideal in
Z[X]. To verify this, we begin with the observation that
<x>={f(x) € Z[x] | f(0) = 0} .Thus, if g(x)h(x) € <x >

then g(0)h(0) = 0. And since g(0) and h(0) are integers, we have
g(0) =0 or h(0) = 0.To see that < x > is not maximal, we simply
note that < x > c < x,2 > c Z[X]
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FACTORISATION OF
POLYNOMIALS OVERAFIELD

Ideals and factor rings,Diana Mary George,St.Mary’s College



Preliminaries

\/

¢ LetR bearing with unity 1# 0. An elementu in R IS
a unit of R If it has a multiplicative inverse in R.

¢ If every non zero element of R isa unitthen R is a
division ring.
» Afield i1s a commutative division ring.

> Let F be a field. Let F[x] denote set of all polynomials
with indeterminate x of finite degree with coefficients
from field F. F[x] is a ring.
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DIVISION ALGORITHM IN F[X]

Let f(X)=X",a; xt, g(X)=X", b;x; € F[x] then
there are unique polynomials g(x) and r(x) in F[X]
such that f(x) =g(x)qg(x)+r(x) where either r(x)=0
or the degree of r(x) < degree of g(x)

FACTOR THEOREM
An element a€ F is a zero of f(x) € F[x] if and

only If x-a Is a factor of f(x) in F[x].
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COROLLARY 1:

A nonzero polynomial f(x) € F[x] of degree n can
have atmost n zeros in a field F.

COROLLARY 2:

If G Is a finite subgroup of the multiplicative group
(F-{0}, =) of a field F, Then G is cyclic.
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IRREDUCIBLE POLYNOMIALS

A nonconstant polynomial f(x) € F[x] is irreducible
over F If f(x) cannot be expressed as a product
g(x)h(x) of two poynomials g(x) and h(x) in F[x]
both of lower degree than the degree of f(x).

THEOREM 1:

Let f(x) € F[x] be of degree 2 or 3. Then f(x) is
reducible over F if and only if it has a zero In F.
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THEOREM 2:

If f(x) € Z|x] then f(x) factors into a product of
two polynomials of lower degrees r and s in Q[x] If
and only If it has such a factorization with
polynomials of the same degrees r and s in Z|x].

COROLLARY 3:

If f(x) =x"+a,_x™" 1+ -+ ayisinZ[x] with
ap, # 0 and If f(x) has a zero in Q then it has a zero
m In Z and m must divide a,.
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EISENSTEIN CRITERION

Let p € Z be a prime. Suppose that f(x) = a, x,, +
a,_1x"" 1 +--+agisinZ[x] and a, = 0 mod p

but ;=0 mod p for all i < n with a, # 0 mod p? . Then
f(x) is irreducible over Q.

COROLLARY 4.
The polynomial

p_ ]
D, (X)= xx_ll =xP 1+ xP 2+ ..+ x+1is
Irreducible over Q for any prime p.

Factorisation of Polynomials over a field, Diana Mary George, St.Mary’s College, Thrissur.



THEOREM 4:

Let p(x) be an irreducible polynomial in F[x]. If
p(x) divides r(x)s(x) for r(x),s(x) € F[x] then
either p(x) divides r(x) or p(x) divides s(x).

COROLLARY 5:
If p(x) Is irreducible in F[x] and p(x) divides the

product r; (x)r, (x) ...7;,(x) for r;(x) € F[x] then
p(x) divides r;(x) atleast one i.
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THEOREM 5:

If F Is a field then every non constant polynomial
f(x) € F[x] can be factored in F[x] into a product
of irreducible polynomials the irreducible

polynomials being unique except for order and for
unit factors in F.
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Proof Existence :

The set of cosets forms a group under addition. The multiplication is
well-defined if and only if Alis an ideal of R. To do this, suppose that A is
an ideal and lets + A=s’+ Aand t + A=1t"+ A. Then we must show that
st+ A=st’tA.

s=s’+aandt=t"+Db, where a,b € A.
Thenst=(s’+a)(t’+b)=s’t’+at’+s’b + ab and so
st+A=st"+at’+s’b+ab +tA=s"t"+A.
Thus multiplication is well-defined when A is an ideal.
On the other hand, suppose that A is a subring of R that is not an
ideal of R. Then there exist elementsa € Aand r € R such thatar ¢ A
or ra ¢ A. For convenience, let ar ¢ A. Consider the elements
atA=0+Aandr+A.Clearly, (a+A)(r+A) =ar+Abut
(0+A)(r+A)=0.r+ A=A. Since ar + A=A, the multiplication is not
well-defined and the set of cosets is not a ring
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Proof Theorem 2:

Suppose that R/Ais an integral domain and ab € A.
Then (a+ A)(b + A) =ab + A=A, the zero element of the ring R/A.
So,eithera+ A=Aorb+A=A;thatis, eitherae Aorb eA.
Hence A is prime,
To prove the other half, we first observe that R/A is a commutative
ring with unity for any proper ideal A.
We show that when A is prime, R/A has no zero-divisors. So,
suppose that Ais primeand (a+A)(b+A)=0+A=A.
Then ab € A and, therefore,a € Aorb € A.
Thus, one of a + Aor b + Alis the zero coset in R/A.
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Proof Theorem 3:

Suppose that R/A is a field and B is an ideal of R that properly
contains A. Letb € Bbutb ¢ A. Then b + A is a nonzero element
of R/A and, therefore, there exists an element ¢ + A such that
(b+A) (c+A)=1+A, the multiplicative identity of R/A. Since
b e B,wehavebceB.Becausel+A=(b+A)(c+A)=Dbc+A,
We have 1-bc e Ac B. So,1=(1-bc) + bc € B. Therefore B =R.
This proves that A is maximal.

Now suppose that A is maximal and letb € Rbutb ¢ A. It
suffices to show that b + A has a multiplicative inverse. All other
properties
for a field follow trivially. Consider B={ br+a|r € R, a € A}. This
Is an ideal of R that properly contains A .Since A is maximal, we must
have B=R. Thus, 1 € B, say, 1 =bc +a’, where a’ € A.
Thenl+A=bc+a’+A=bc+A=(b+A)(c+A).

When a commutative ring has a unity, it follows that a maximal ideal
Is a prime ideal.
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