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Ideal

A subring A of a ring R is called a (two-sided) ideal of R if for

every r ∈ R and every a ∈A both ra and ar are in A.

Theorem 1 (Ideal Test):

A nonempty subset A of a ring R is an ideal of R if

1. a - b ∈ A whenever a, b ∈ A.

2. ra and ar are in A whenever a ∈A and r ∈ R.

EXAMPLE 1:

For any ring R, {0} and R are ideals of R. The ideal {0}is called the 

trivial ideal.
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EXAMPLE 2: 

For any positive integer n, the set nZ = {0, ±n, ± 2n,…} is an 

ideal of Z.

EXAMPLE 3:
Let R be a commutative ring with unity and let a ∈ R.

The set < a > = { ra | r ∈R} is an ideal of R called the principal ideal

generated by a. 

EXAMPLE 4:

Let R be a commutative ring with unity and let a1,a2,…, an ∈
R. Then I = < a1,a2,…, an> ={r1a1,r2a2,…, rnan|r ∈ R} is an 

ideal of R called the ideal generated by a1,a2,…, an.
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Existence of Factor Rings

Let R be a ring and let A be a subring of R. 

The set of cosets { r + A |r ∈ R} is a ring under the operations

(s + A) +(t + A) = s + t + A and

(s + A)(t + A) = st + A if and only if A is an ideal of R.

EXAMPLE 5:

Z/4Z = {0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}. 

To see how to add and multiply, consider 2 + 4Z and 3 + 4Z.

(2 + 4Z) + (3 + 4Z) = 5 + 4Z = 1 + 4 + 4Z = 1 + 4Z,

(2 + 4Z)(3 + 4Z) = 6 + 4Z = 2 + 4 + 4Z = 2 + 4Z.

One can readily see that the two operations are essentially modulo 4 

arithmetic.
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EXAMPLE 9:

2Z/6Z = {0 + 6Z, 2 + 6Z, 4 + 6Z}. Here the operations are 

essentially modulo 6 arithmetic. For example,

(4 + 6Z) +(4 + 6Z) = 2 + 6Z and (4 + 6Z)(4 + 6Z) = 4 + 6Z.

EXAMPLE 10: 

Consider the factor ring of the Gaussian integers R = Z[i]/<2 -i>. 

The elements of R have the form a + bi + <2 – i>, where a and b 

are Similarly, all the elements of R can be written in the form a +

<2 – i> where a is an integer. We can show that every element of 

R is equal to one of the following cosets: 0 + <2 – i>,1 + <2 – i>,

2 + <2 – i>, 3 + <2 – i>, 4 + <2 – i>. In fact R is same as 5.
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EXAMPLE 11:

Let R[x] denote the ring of polynomials with real coefficients and let 

< x2+1> denote the principal ideal generated by x2+1

< x2+1> = { f(x)(x2+1) | f(x) ∈ R[x]}.

Then R[x]/< x2+1> = { g(x) + < x2+1> | g(x) ∈ R[x]}

If g(x) ∈ R[x], then g(x) =q(x)(x2+1) + r(x), where q(x) is the

quotient and r(x) is the remainder upon dividing g(x) by x2+1.

In particular, r(x) = 0 or the degree of r(x) is less than 2, so that 

r(x) = ax + b for some a and b in R. Thus,

g(x) +< x2+1> = q(x)(x2+1) + r(x) + < x2+1> = r(x) + < x2+1>
= ax + b +< x2+1>

∴ R[x]/< x2+1> ={ax + b +  < x2+1>|a,b ∈R }
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Prime Ideals 

A prime ideal A of a commutative ring R is a proper ideal of R such

that a, b ∈ R and ab ∈ A imply a ∈A or b ∈A. 

Maximal Ideals

A maximal ideal of a commutative ring R is a proper ideal of R such that, 

whenever B is an ideal of R and A  B  R, then B = A or B = R.

EXAMPLE 12

Let n be an integer greater than 1. 

In the ring of integers, the ideal nZ is prime if and only if n is prime 

{0} is also a prime ideal of Z.
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EXAMPLE 13

The lattice of ideals of 𝑍36 shows that only < 2 > and <3> are maximal ideals

𝑍36

<2> <3>

<4>                                   <6>                                  <9>

<12>                                       <18>

{0}
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EXAMPLE 15:

The ideal < x2+1> is maximal in R[x]. 

To see this, assume that A is an ideal of R[x] that properly contains 

< x2+1>. We will prove that A = R[x] by showing that A contains 

some nonzero real number c. (This is the constant polynomial h(x) = 

c for all x.) Then 1 =(1/c)c ∈A and therefore, A = R[x]. 

To this end, let f(x) ∈ A, but f(x)  < x2+1>.

Then f(x) = q(x)(x2+1) + r(x),where r(x)  0 and the degree of r(x) 

is less than 2. It follows that r(x) = ax + b, where a and b are not 

both 0, and ax + b = r(x) = f(x) - q(x)(x2+1) ∈A 

Thus, a2x2- b2=(ax + b)(ax - b) ∈A

So  0 a2+b2 = (a2x2 + a2) − (a2 x2 − b2) ∈A
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Theorem 2

Let R be a commutative ring with unity and let A be an ideal of R.

Then R/A is an integral domain if and only if A is prime.

Theorem 3

Let R be a commutative ring with unity and let A be an ideal of R.

Then R/A is a field if and only if A is maximal.

EXAMPLE 17

The ideal <x > is a prime ideal in Z[x] but not a maximal ideal in 

Z[x]. To verify this, we begin with the observation that

< x > = { f(x) ∈ Z[x] | f(0) = 0} .Thus, if g(x)h(x) ∈ < x > 

then g(0)h(0) = 0. And since g(0) and h(0) are integers, we have 

g(0) = 0 or h(0) = 0.To see that < x > is not maximal, we simply 

note that < x > ⊂ < x,2 > ⊂ Z[x]
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FACTORISATION OF 

POLYNOMIALS OVER A FIELD



 Let R be a ring with unity 1≠ 0.An element u in R is 

a unit of R if it has a multiplicative inverse in R.

 If every non zero element of R is a unit then R is a 

division ring.

 A field is a commutative division ring.

 Let F be a field. Let F[x] denote set of all polynomials 

with indeterminate x of finite degree with coefficients 

from field F. F[x] is a ring.

Factorisation of Polynomials over a field, Diana Mary George, St.Mary’s College, Thrissur.

Preliminaries
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DIVISION ALGORITHM IN F[x]

Let  f(x)= 𝑖=0
𝑛 𝑎𝑖 𝑥

𝑖,  g(x)= 𝑖=0
𝑚 𝑏𝑖𝑥𝑖 ∈ F[x] then 

there are unique polynomials q(x) and r(x) in F[x] 

such that f(x) =g(x)q(x)+r(x) where either r(x)=0 

or the degree of r(x) ≤ degree of g(x)

FACTOR THEOREM

An element a∈ F is a zero of f(x) ∈ F[x] if and 

only if x-a is a factor of f(x) in F[x].
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COROLLARY 1:

A nonzero polynomial f(x) ∈ F[x] of degree n can 

have atmost n zeros in a field F.

COROLLARY 2:

If G is a finite subgroup of the multiplicative group 

(F-{0}, ∗) of a field F, Then G is cyclic.
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IRREDUCIBLE POLYNOMIALS

A nonconstant polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] is irreducible 

over F if 𝑓(𝑥) cannot be expressed as a product 

𝑔 𝑥 ℎ(𝑥) of two poynomials 𝑔 𝑥 and ℎ(𝑥) in 𝐹[𝑥]
both of lower degree than the degree of 𝑓 𝑥 .

THEOREM 1:

Let 𝑓(𝑥) ∈ 𝐹[𝑥] be of degree 2 or 3. Then 𝑓 𝑥 is 

reducible over F if and only if it has a zero in F.
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THEOREM 2:

If 𝑓(𝑥) ∈ ℤ[𝑥] then 𝑓(𝑥) factors into a product of 

two polynomials of lower degrees r and s in ℚ[𝑥] if 

and only if it has such a factorization with 

polynomials of the same degrees r and s in ℤ 𝑥 .

COROLLARY 3:

If 𝑓 𝑥 = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎0 is in ℤ 𝑥 with 

𝑎0 ≠ 0 and if 𝑓(𝑥) has a zero in ℚ then it has a zero 

m in ℤ and m must divide 𝑎0.
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EISENSTEIN CRITERION

Let 𝑝 ∈ ℤ be a prime. Suppose that 𝑓 𝑥 = 𝑎𝑛𝑥𝑛 +
𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 is in ℤ 𝑥 and  𝑎𝑛 ≠ 0𝑚𝑜𝑑 𝑝
but 𝑎𝑖=0 mod p for all 𝑖 < 𝑛 with 𝑎0 ≠ 0𝑚𝑜𝑑 𝑝

2 . Then 

𝑓 𝑥 is irreducible over ℚ.

COROLLARY 4:

The polynomial

Φ𝑝(x)=
𝑥𝑝−1

𝑥−1
= 𝑥𝑝−1 + 𝑥𝑝−2 +⋯+ 𝑥 + 1 is 

irreducible over ℚ for any prime p. 
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THEOREM 4:

Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥]. If 
𝑝(𝑥) divides 𝑟 𝑥 𝑠 𝑥 for 𝑟 𝑥 , 𝑠 𝑥 ∈ 𝐹[𝑥] then 

either 𝑝(𝑥) divides 𝑟 𝑥 or 𝑝(𝑥) divides 𝑠 𝑥 .

COROLLARY 5:

If 𝑝(𝑥) is irreducible in 𝐹[𝑥] and 𝑝(𝑥) divides the 

product 𝑟1 𝑥 𝑟2 𝑥 …𝑟𝑛 𝑥 for 𝑟𝑖 𝑥 ∈ 𝐹[𝑥] then 

𝑝(𝑥) divides 𝑟𝑖 𝑥 atleast one 𝑖.
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THEOREM 5:

If F is a field then every non constant polynomial 

𝑓(𝑥) ∈ 𝐹[𝑥] can be factored in 𝐹[𝑥] into a product 

of irreducible polynomials the irreducible 

polynomials being unique except for order and for 

unit factors in F.
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Proof Existence :
The set of cosets forms a group under addition. The multiplication is 

well-defined if and only if A is an ideal of R. To do this, suppose that A is 

an ideal and let s + A = s’ + A and t + A = t’ + A. Then we must show that 

st + A = s’t’+A.

s = s’+ a and t = t’ + b, where a ,b ∈ A. 

Then st = (s’ + a)(t’ + b) = s’t’ + at’ + s’b + ab and so

st + A = s’t’ + at’ + s’b + ab +A = s’t’ +A .

Thus multiplication is well-defined when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an

ideal of R. Then there exist elements a ∈ A and r ∈ R such that ar A

or ra  A. For convenience, let ar A. Consider the elements 

a + A = 0 + A and r + A. Clearly, (a + A)(r + A) = ar + A but 

(0 +A)(r + A) = 0.r + A = A. Since ar + A A, the multiplication is not 

well-defined and the set of cosets is not a ring
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Proof Theorem 2:

Suppose that R/A is an integral domain and ab ∈A. 

Then (a + A)(b + A) = ab + A = A, the zero element of the ring R/A. 

So,either a + A = A or b + A = A; that is, either a ∈A or b ∈A. 

Hence A is prime.

To prove the other half, we first observe that R/A is a commutative 

ring with unity for any proper ideal A. 

We show that when A is prime, R/A has no zero-divisors. So, 

suppose that A is prime and (a + A)(b + A) = 0 + A = A. 

Then ab ∈A and, therefore, a ∈A or b ∈A. 

Thus, one of a + A or b + A is the zero coset in R/A.
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Proof Theorem 3:

Suppose that R/A is a field and B is an ideal of R that properly

contains A. Let b ∈ B but b  A. Then b + A is a nonzero element

of R/A and, therefore, there exists an element c + A such that

(b + A)  (c + A) = 1 + A, the multiplicative identity of R/A. Since

b ∈ B, we have bc ∈ B. Because 1 + A = (b + A)(c + A) = bc + A,

We have 1 - bc ∈ A ⊂ B. So, 1 = (1 - bc) + bc ∈ B. Therefore B = R. 

This proves that A is maximal. 

Now suppose that A is maximal and let b ∈ R but b  A. It 

suffices to show that b + A has a multiplicative inverse. All other 

properties

for a field follow trivially. Consider B = { br + a | r ∈ R, a ∈ A}. This

is an ideal of R that properly contains A .Since A is maximal, we must 

have B = R. Thus, 1 ∈ B, say, 1 = bc + a’, where a’ ∈ A.

Then 1 + A =bc + a’ + A = bc + A = (b + A)(c + A).

When a commutative ring has a unity, it follows that a maximal ideal 

is a prime ideal.




