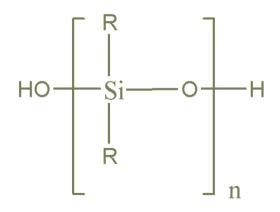
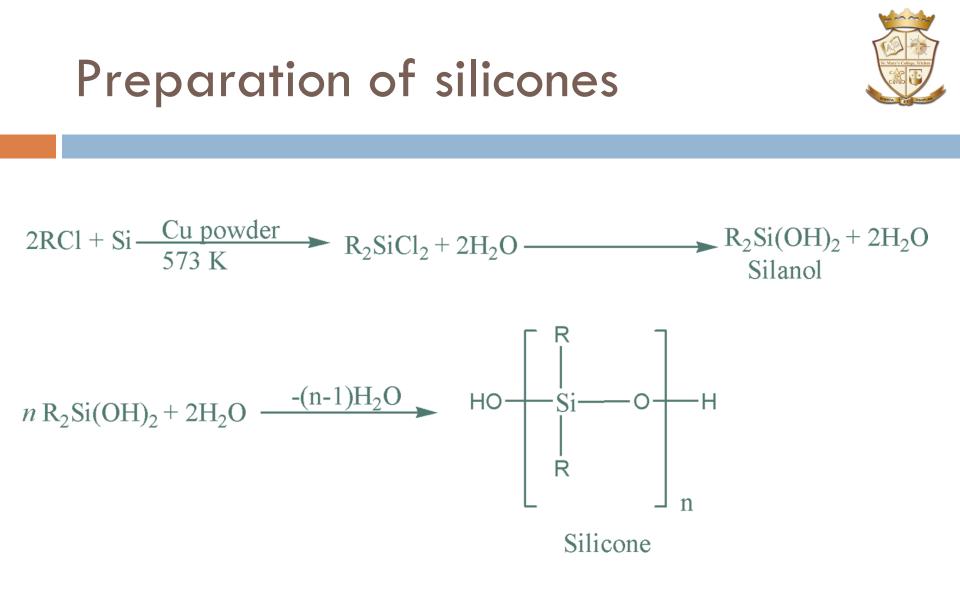
INORGANIC POLYMERS

Dr. Manju Sebastian Assistant Professor Department of Chemistry St.Mary's College, Thrissur

- Macromolecules that contain elements other than carbon as part of their principal backbone structure
- □ In nature-mica, clays, talc etc.
- Typical examples-silicones, silicates, zeolites, phosphazenes etc.





 Synthetic organosilicon polymers containing repeated R₂SiO units held together by Si-O-Si linkages

<<<<<<<<<<<<<structure</p>

- Straight chain and cyclic forms are possible
- Chain growth may regulated using by adding (CH₃)₃SiCl during hydrolysis
- Hydrolysis of alkyl trichlorosilane gives complex cross-linked polymers

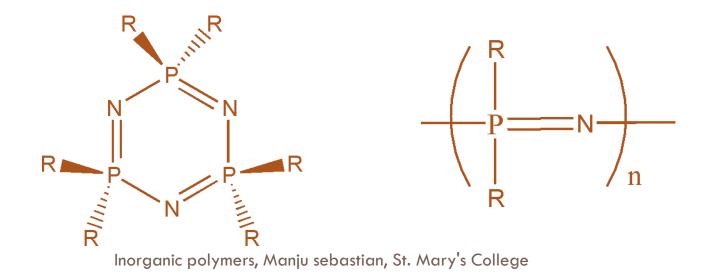
Types of silicones

- Silicone fluids
 - Straight chain polymers + cyclic polymers
 - 20-500 units
 - Variying BP and viscosities
- Silicone elastomers or silicone rubbers
 - Linear polymers
 - 6000-6 lakh Si units
- Silicone resins
 - Cross linked polymers

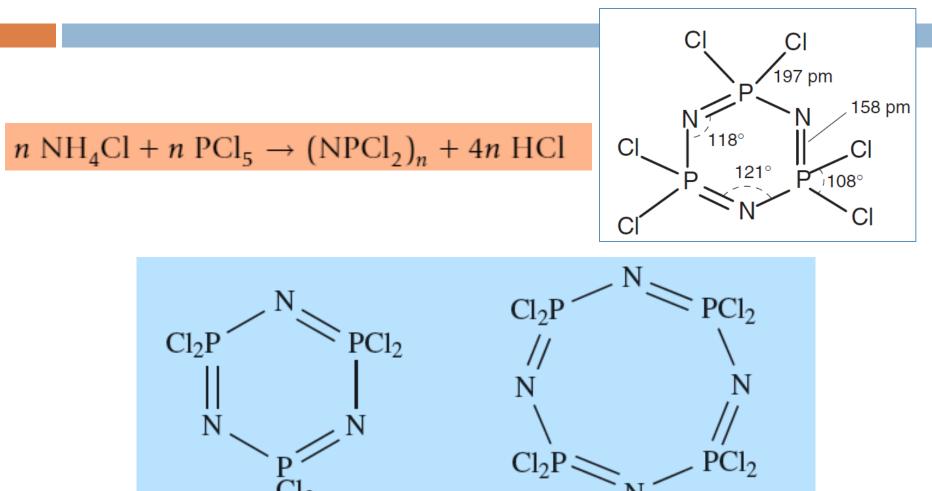
Harder and stiffer than rubber Inorganic polymers, Manju sebastian, St. Mary's College

Properties and applications of silicones

- Chemically inert and water repellent
- Resistant to heat, chemicals and oxidation (high Si-O, Si-C bond energy)
- Silicone fluids are used as lubricants, anti-foam agents, greases, high temp oil bath, vacuum pump etc.
- Silicone rubbers resistant to weathering (high thermal stability and low temp flexibility)-used in gaskets, seals, insulation, containers, surgical devices etc.
- Silicone resins —insulating coatings, varnishes, paints etc.



Phosphazenes


□ N in +3, P in +5

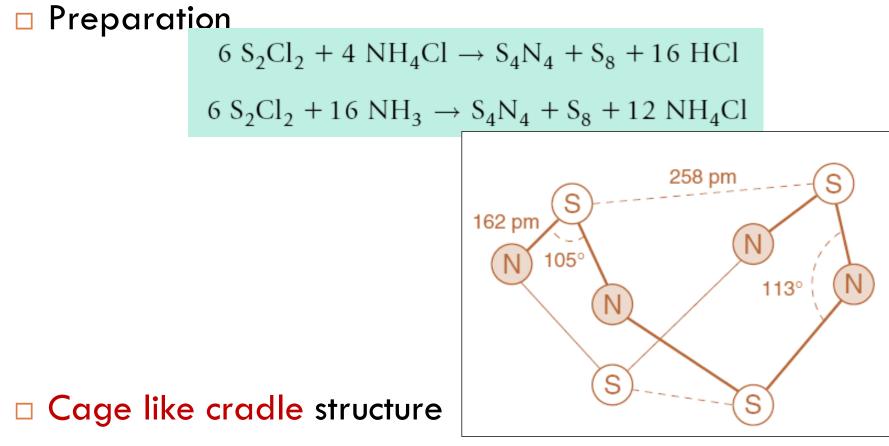
Cyclic phosphazenes and polyphosphazenes

Preparation

Reactions of cyclic and polyphosphazenes

- Reaction with phenyl lithium, grignard reagent (alkylation)
- Reaction with sodium methoxide (acylation)

- High thermal stability, properties can control by changing substituents
- Ultra hydrophobic, retard flame
- Sealing agent for semiconductors
- Good elastomer, flexible even at low temperatureresistant to chemicals-used in fuel lines, gaskets, shock absorbers etc.



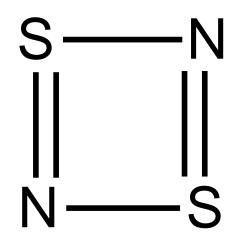
S-N compounds

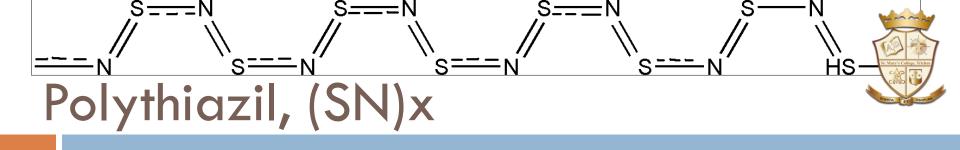
 S_4N_4 S_2N_2 $(SN)_X$

S₄N₄ TETRASULPHUR TETRANITRIDE

Stable to air-tends to detonate on hammering

(decompose to N and S)



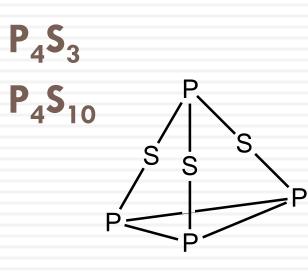

S₂N₂ DISULPHUR DINITRIDE

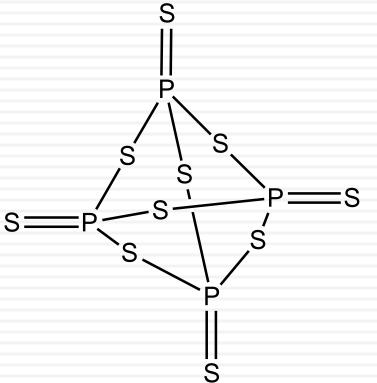
Preparation

$$\Box S_4 N_4 + 8Ag \rightarrow 4 Ag_2 S + 2N_2$$

- $\Box S_4 N_4 + Ag_2 S \rightarrow 2 S_2 N_2$
- Structure
- Properties and application
 - Tend to detonate
 - Easily polymerise

Preparation


- Polymerisation of S₂N₂ at RT
- $\blacksquare \mathsf{x}/2 \ \mathsf{S}_2\mathsf{N}_2(s) \not \rightarrow \mathsf{(SN)}_{\mathsf{x}}(s)$


Structure

- Planar parallel chains-alternate single and double bond
- Properties and application
 - covalent polymer with metallic properties-forms lustrous crystals-chemically inert-explosive when compressedelectrode-efficiency of solar cell can increase

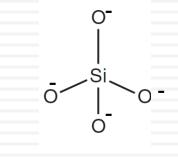
S-P compounds

Sulphur-phosphorous compounds

$\square \mathbf{P}_4 \mathbf{S}_3$

- Tetrahedral array of P atoms
- $\square P_4 + 3S \rightarrow P_4S_3 (>100°C)$
- Most stable sulphide of P
- Used in match industry (P₄S₃ + KClO₃ match head)

$\square \mathbf{P}_4 \mathbf{S}_{10}$


- Tetrahedral array of P atoms
- $\square P_4 + 10S \rightarrow P_4S_{10} (>300^{\circ}C)$
- Sensitive to moisture (form H₃PO₄)
- Lawesson's reagent

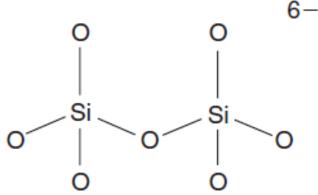
 (Anisole + P₄S₁₀) is a
 thionating agent in org
 synthesis

Silicates

Si-O 3.5-1.8=1.7 50% ionic and covalent Tetrahedral SiO₄ $^{4-}$

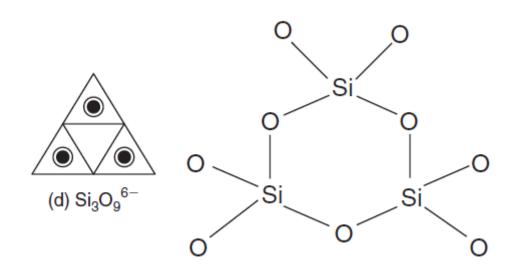
Classification of silicate

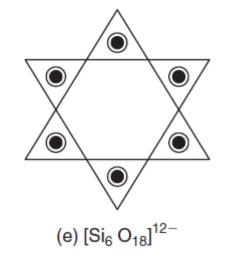
- Orthosilicate
- Pyrosilicate
- Cyclic silicate
- Chain silicate
- Sheet silicate
- 3D silicate



- □ Simple silicate containing discrete SiO_4^{4-} tetrahedra □ Eg: Zircon (ZrSiO₄); Forestrite (Mg₂SiO₄), Willemite
- (Zn_2SiO_4)

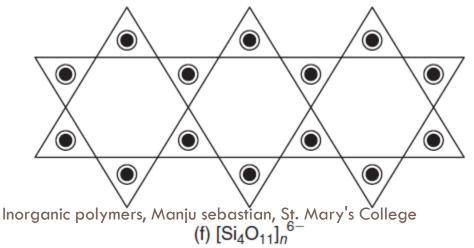
Pyrosilicate


- □ Contain Si₂O₇ ⁶⁻ units
- Possess island structure
- □ Eg: thortveitite , $Se_2Si_2O_7$, and hemimorphite , $Zn_4(OH)_2Si_2O_7$

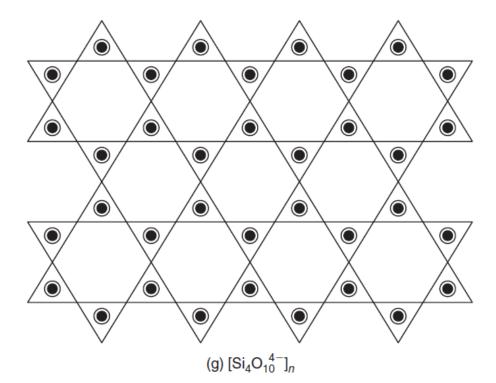


Cyclic silicate (ring silicate)

- \Box Contain ring structures (SiO₃²⁻)_n
- 2 oxygen atoms are shared
- Eg: wollastonite, beryl



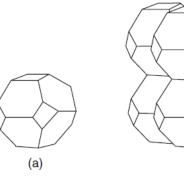
Chain silicate


- 2 oxygen atoms are shared
- Single chain silicates and double chain silicates
- Single chain silicates contain (SiO₃²⁻)n chains (Examples spodumene and diopside)
- Double chain silicates contain (Si₄O₁₁⁶⁻)n double chains (Ea: asbestos. tremoline)

Sheet silicate

- □ When SiO₄⁴⁻ tetrahedra shares 3 corners
- □ Infinite 2D sheet, empirical formula (Si₂O₅²⁻)n
- Eg: Kaolinite, talc

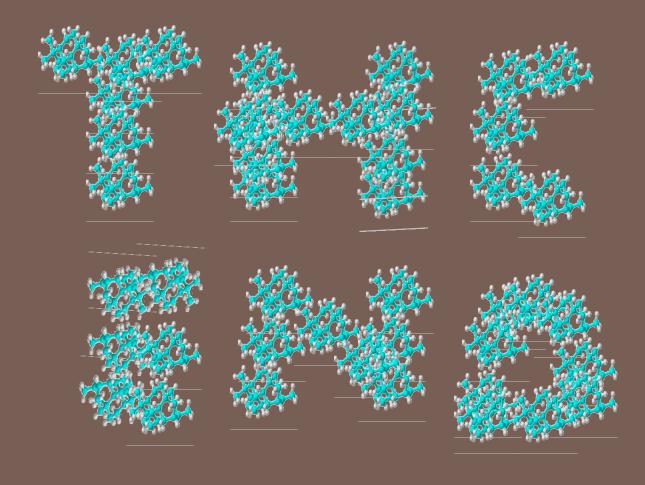
3D silicate



- \square When SiO₄⁴⁻ tetrahedra shares all 4 corners
- \square empirical formula (SiO₂)_n
- Eg: quartz, tridymite, cristobalite etc.
- Si may be replaced by other cations to form feldspars, zeolites and ultramarines

- Feldspars are aluminosilicate salts of K⁺, Na⁺, Ca²⁺ or Ba²⁺and constitute an important class of rockforming minerals
- Zeolites are crystalline, hydrated aluminosilicates that possess framework structures containing regular channels and/or cavities; the cavities contain H₂O molecules and cations (usually group 1 or 2 metal ions).
- Ultramarines are splendidly coloured aluminosilicates containing anions like chloride, sulphategete.^{Manju sebastian, St. Mary's College}

Zeolites



(b)

- Crystalline aluminosilicates
- \Box Gen formula $M_{x/n}^{n+} \left[A l_x S i_y O_{2x+2y} \right]^{x-1}$
- Natural and synthetic
- Ion exchanger-soften hard water

 $2 \text{ Na-zeolite}(s) + Ca^{2+}(aq) \rightarrow Ca-zeolite}(s) + 2 \text{ Na}^{+}(aq)$

- Shape selective catalysis
 - Conversion of benzene to ethyl benzene, methanol to gasoline
- Molecular sieves
 - Depending-upon-the-pore-size small molecules passes

Thank you.