C 63028	(Pages : 2)	Name
		Reg. No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2019

(CUCSS)

Chemistry

CH 2C 06—CO-ORDINATION CHEMISTRY

(2015 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.
Each question carries 1 weightage.

- 1. K_3 value is found to be greater than K_2 value for Fe(II) complexes of 1, 10-phenanthroline. Why?
- 2. A tris-diaminoethane complex will generally be more stable than the-corresponding monodendate ligand. Why?
- 3. Nickel and Platinum are in the same family of Periodic Table but [NiC1₄]²⁻ and [PtC1₄]²⁻ differ considerably in their geOmetries. Why?
- 4. Interionic repulsion is found to be weaker in complexes than in free ions. Why?
- 5. Deduce the spectroscopic ground term of pldifl and Co³₊.
- 6. State Curie law and Curie-Weiss law.
- 7. Arrange the following in the order of increasing CO stretch frequencies and explain your answer $[Mn(C0)_6l+, [Ti(C0)_6l^{2-}, [Cr(C0)_6], [V(C0)_6l]]$
- 8. Define Doppler broadening of Mossbauer spectroscopy.
- 9. Steric crowding favours dissociative mechanism of substitution in metal complexes. Justify the statement with suitable examples.
- 10. Write down the Fuoss-Eigen equation and explain the terms.
- 11. Complexes containing Ci⁻, NCS N3 and CN⁻ ions as ligands favour inner sphere electron transfer reactions. Why ?
- 12. What is photorecimization? illustrate,

 $(12 \times 1 = 12 \text{ weightage})$

Turn over

2 C 63028

Section B

Answer any **eight** questions. Each question carries **2** weightage.

- 13. Write down the stepwise and overall formation constants for the reaction $Cu^{2+} + 4NH_3$ $Cu (NH_3)4^+$. Also calculate P_4 value for the reaction if $\log k_1 = 4$, $\log k_2 = 3.2$, $\log k_3 = 2.7$ and $\log k_4 = 2$.
- 14. Describe the spectrophotometric method for determining Binary formation constant.
- 15. Name and draw the structures of the following complexes:
 - (a) $[Ni(CO)_4]$; (b) $[Ni(CN)_4]^{2-}$; (c) $[CoC1_4]^{2-}$; (d) $[Ni(NH_3)_6]^{2+}$.
- 16. Explain how does a Pi donor ligand influences the magnitude of the splitting parameter in a pi bonded octahedral complex.
- 17. What do you mean by spin only magnetic moment? Calculate the spin only magnetic moment for (a) $[Fe(CN)_6]^{4-}$; (b) $[Ru(NH_3)_6]^3+$; (c) $[Cr(NH_3)_6]^2+$.
- 18. Write down the favourable conditions for LMCt and MLCT.
- 19. Explain hyperfine structure of EPR spectrum taking Cu(II) complex as example.
- 20. Sketch the Mossbauer spectra for the complexes $K_4[Fe(CN)_6]^{1-}$ and $K_3[Fe(CN)_6]^{4-}$. Explain the features of the spectra.
- 21. What is trans effect? How is 'cis' and trans [Pt(NH₃)₄l²+ synthesized by the application of trans effect?
- 22. Give a brief note on SN¹CB mechanism.
- 23. Distinguish between outer sphere and inner sphere reactions with examples.
- 24. Discuss the reducing and oxidizing character of [Ru(bipy)₃]²+.

 $(8 \times 2 = 16 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Discuss the merits of MOT over CFT and sketch the MO diagram for [CoF₆]³⁻ and predict its magnetic behaviour.
- 26. What are Orgel diagrams? Draw the Orgel diagrams for $[Cr(H_2O)_6]^3 + and [Co(H_9O)_6]^2 + and$ explain how does their electronic spectra differ each other?
- 27. With suitable examples, discuss the applications of **IR** spectroscopy in structural studies of metal complexes.
- 28. Give an account of photochemical reactions of metal complexes.

 $(2 \times 4 = 8 \text{ weightage})$