Reg. IV('L,
SECOND SEMESTER M.Sc. DEGREE E
(CUCSS)
Computer Science
CSS 2C 01—DESIGN AND ANALYSIS OF ALGORITHMS
(2014 Admissions)
Maximum ; 36 Weightag

Time : Three Hours

> Part A
> Answer all questions.
> Each question carries 1 weightage,

1. Give the names of two popular string matching algorithms
2. What is the best case time complexity of a sorting algorithm
3. Define Big-0 ratio theorem.
4. What are the drawbacks of dynamic programming?
5. Define $0 / 1$ Knapsack problem.
6. What are the requirements that are needed for backtra,eking
7. What is the time complexity of a binary search algorithm?
8. List any two properties of NP problem.
9. What are memory functions ? State its uses,
10. Give two examples of divide-and-conquer method.
11. If $f(n)=5 \mathrm{n}^{2}+6 \mathrm{n}+4$, then prove that $f(n)$ is $O\left(\mathrm{n}^{2}\right)$,
12. State Cook's theorem.

$$
\left(121=12 \text { weighta }_{\mathrm{g}} \mathrm{e}\right.
$$

Part B

Answer any six questions.
Each question carries 2 weightage.
13. What are Parallel Random Access Machines ?
14. Compare time complexity and space complexity of merge sot and ciuiJ sort.
15. What is brute-force method? Explain how it can be applied ia string matching problem.
16. Briefly explain Strassen's Matrix Multiplication algorithm,
17. Write an algorithm to find the height of a binary tree.
18. Draw the decision tree for the 3 -element insertion sort.
19. E.q)h=' the Prim's algorithm for finding the minimum spanning tree with an example.
20. A.e e complexity of BFS algorithm.
21. Whai. parallel prefix computation? Explain its characteristics and applications.
(6×2.12 weightage)

Part C

Answer any three questions.
Each question carries $\mathbf{4}$ weightage.
22. Explai, q ttie method of comparing the order of the growth of two Danction.s using limits. Compare orde growth of following functions : (i) $\log _{2} n$ and (ii) $\left(\log _{2} n\right)^{2}$ and $\log _{2} n^{2}$.
23. Apply thnis and Kruskal's algorithm to the following graph :

24. Write ;:;erge sort algorithm to sort the following numbers $14,17,18,12,9,7,11,34,21$, ii. Deride $t: 7$,e best and the worst case time complexity of merge sort algorithm.
25. Prove that satisfiability of Boolean formula in 3-Conjunctive Normal Form. (3-C1cF) is NP Uomete.
26. Appl loyd's algorithm to find all pairs shortest path for the graph given below :

27. Define Symmetry breaking. Describe how fast deterministic symmetry breaking can be achieved with an example.

