(Pages: 3)
Name
Reg. No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2019

(CUCSS)

Computer Science

CSS 2E 05 (0—NUMERICAL AND STATISTICAL METHODS
 (2014 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A
Answer all questions.
Each question carries 1 weightage.

1. What are inherent errors ?
2. Write an example for algebraic equation, polynomial equations, transcendental equations.
3. What is solution by elimination in linear equations ?
4. Write an example for Langrange interpolation polynomial.
5. Explain error analysis in Trapezoidal rule.
6. What is composite Simpson's $1 / 3$ rule ?
7. Define probability in Statistics.
8. Write the normal distribution function with an example.
9. Consider the following linear equations :

$$
\text { Minimize } W=-5 x+8 y+4 z
$$

subject to the contraints

$$
\begin{aligned}
& x+y=2 \\
& y-z \quad 3 \\
& 2 x-y-1 \\
& x O, y O, z \quad 0 .
\end{aligned}
$$

Formulate the dual for this Linear Programming Problem.
10. Explain the degeneray conditions in Simplex method.
11. What is the probability of getting a sum nine from two throws of a dice ?
12. Explain the addition theorem in probability.

$$
\text { (12 x } 1=12 \text { weightage) }
$$

Part B

Answer any six questions.
Each question carries 2 weightage.
13. What are the limitations of Newton Raphson method.
14. Explain Jacobi iteration method.
15. Let $y(0)=1, y(1)=0, y(2)=1$ and $y(3)=10$. Find $y(4)$ using Newtons Forward Difference formula.
16. From the following table, find the area bounded by the curve and x axis from $x=7.47$ to $x=7.52$ using Simpson's $1 / 3$ rule

```
x : 7.47 7.48 7.49 7.50 7.51 7.52
f = 1.931.95 1.98 2.01 2.03 2.06
```

17. A box contains three coins : two regular coins and one fake two-headed coin $(\mathrm{p}(\mathrm{H})=1)$.

- You pick a coin at random and toss it. What is the probability that it lands heads up ?
- You pick a coin at random and toss it, and get heads. What is the probability that it is the two-headed coin?

18. Describe the algorithm of Gauss Seidal method.
19. Explain Adams-Bashforth method.
20. Explain the different steps involved in the Assignment problem.
21. Explain different types of solutions in graphical method.
($6 \times 2=12$ weightage)

Part C

Answer any three questions.
Each question carries 4 weightage.
22. Find a root of an equation $f(x)=x^{3}-x-1$ using Bisection method.
23. Solve linear equations $7 \mathrm{y}+2 \mathrm{x}=11,3 \mathrm{x}-\mathrm{y}=5$ using Gauss Jordan Elimination method.
24. Using Newton's forward differentiation method to find solution, $x=1.2$:

x	$f(x)$
1.0	2.7183
1.2	3.3201
1.4	4.0552
1.6	4.9530
1.8	6.0496
2.0	7.3891
2.2	9.0250

23. Find $y(0.2)$ for $y^{\prime}=-y, y(0)=1$, with step length 0.1 using Runge-Kutta fourth order method.
24. Explain Bayes theorem. An urn B_{1} contains 2 white and 3 black balls and another urn B_{2} contains 3 white and 4 black balls. One urn is selected at random and a ball is drawn from it. If the ball drawn is found black, find the probability that the urn chosen was B_{1}.
27 Find solution using Simplex method :
Maximize $Z=3 x_{1}+9 x_{2}$
subject to

$$
\begin{array}{ccc}
x+4 \mathrm{x}_{2}<7= & 8 \\
\mathrm{x} & +2 \mathrm{x}_{2} & 4 \\
\text { and } \mathrm{x}_{1}, \mathrm{x}_{2} & 0
\end{array}
$$

