Name

Reg. No.

SECOND SEMESTER M.A. DEGREE EXAMINATION, JUNE 2019

(CUCSS)

Economics
EC 02 CO8—QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS—II
(2015 Admissions)
Time • Three Hours
Maximum : 36 Weightage

Part A (Multiple Choice)

Answer all questions.
Each question carries a weightage of \%.

1. For a discrete random variable X with distribution function $\mathrm{F}(\mathrm{x}), \mathrm{P}(\mathrm{a}<\mathrm{X}$
b) is
(a) $\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})+\mathrm{P}(\mathrm{X}=\mathrm{b})$.
(b) $F(b)-F(a)-P(X=b)$.
(c) $\mathrm{F}(\mathrm{b}) \mathrm{F}(\mathrm{a})-\mathrm{P}(\mathrm{X}=a)$.
(d) $F(b)-F(a)$.
2. Mean of X following binomial distribution with parameters 8 and 0.5 is
(a) 16 .
(b) 8 .
(c) 4.
(d) None of these.
3. Variance of X following Poisson distribution is $2 . P(X>0)=$ \qquad
(a) e^{-2}.
(b) $1-e^{2}$.
(c) I^{I}.
(d)
4. For a continuous random variable X with p.d.f. $f(x), \mathrm{P}(\mathrm{a}<\mathrm{X}<b)$ is same to \qquad
(a) $\mathrm{P}\left(\mathrm{a}<\mathrm{X} _\mathrm{b}\right)$.
(b) $\mathrm{P}(\mathrm{aX} \mathrm{x} b)$,
(c) Both (a) and (b).
(d) None of these.
5. For X following normal distribution with mean 5 and variance $2, \mathrm{P}(\mathrm{X}>5)=$ \qquad
(a) 0.5.
(b) 1 .
(c) O .
(d) 0.25 .
6. X is a $N(0,1)$ random variable with $P(X<-a)=0.2$. Then $P(-a<X<a)$ is
(a) 0.2 .
(b) 0.8 .
(c) 0.6.
(d) 0.4 .
7. 25 random samples are taken from normal distribution with mean 15 and SD 3 , denoted by $\mathrm{N}(15,3)$. Then the mean of the sample follows
(a) $\mathrm{N}(15,3 / 25)$.
(b) $\mathrm{N}(10,3 / 25)$.
(c) $\mathrm{N}(15,3 / 5)$.
(d) $\mathrm{N}(10,3 / 5)$.
8. Probability distribution of the square of a standard normal random variable is
(a) Normal.
(b) Chi-square.
(c) t.
(d) F .
9. Range of variation of a random variable following F distribution is
(a) 0 to 1 .
(b) 0 to cc .
(c) - to 0 D .
(d) None of these.
10. Which of the folldwing properties are satisfied by the mean of the sample as an estimator to the parameter 2 involved in a Poisson distribution ?
(a) Consistency.
(b) Unbiasedness.
(c) Both.
(d) None.
11. Power of a test is
(a) P (Type I error).
(b) P (Type II error).
(c) 1— P (Type I error).
(d) $1-\mathrm{P}$ (Type II error).
12. Statistic following distribution is used in small sample test to test the mean of a normal population when population variance is not known.
(a) Normal.
(b) Chi-square.
(c) t.
(d) F .
($12 \mathrm{x}=3$ weightage)
Part B (Very Short Answers)
Answer any five questions.
Each question carries 1 weightage.
13. Define Bernoulli trial.
14. If mean and variance of a binomial distribution with parameters n and p are respectively 2 and 1.2 , identify the values of n and p.
15. If . X follow Poisson distribution with parameter 4 , find $\mathrm{V}(3 \mathrm{X}-4)$.
16. State any two properties of normal distribution.
17. What are the desirable properties of a good estimator?
18. Define type I and type II errors.
19. State Neymaan-Pearson Lemma.
20. Write down the test statistic used in testing of the proportion of success of a population.
(5×1 เт 5 weightage)
Part C (Short Answers)
Answer any eight questions.
Each question carries 2 weightage.
21. State and prove the multiplication theorem on Mathematical expectation for two random variables X and Y .
22. When an unbiased die is tossed, the occurrence of the sides 4 or 6 is considered as a success. If X denote total number of successes out of the six tosses, find (i) $P(X=0)$; (ii) $P(X>5)$.
23. Obtain the expectation of a Poisson random variable X with parameter
24. If X follows $\mathrm{N}(15,5)$, find (i) $\mathrm{P}(\mathrm{X}>20)$; (ii) $\mathrm{P}(\mathrm{X}<5)$.
25. A sample of size 36 was taken from a normal population with mean 14 and S.D. 6. Find the probability that the sample mean to differ from the population mean by more than 2 .
26. Obtain the variance of a Chi-square random variable X with n degrees of freedom.
-27. Differentiate between point and interval estimation.
27. What is statistical hypothesis? Define (i) level of significance ; (ii) power of a test.

29: A sample of 900 screws has mean weight 4.45 g . Can we consider it as a sample taken from the box of screws with mean weight 5 g . and with the variance 4 at a 5% level of significance ?
30. Explain paired t-test.
31. Write a short note on. ANOVA.

$$
\left(8^{\times} 2=16 \text { weightage }\right)
$$

Part D (Essays)

Answer any three questions.
Each question carries 4 weightage.
32. Fit a Poisson distribution to the following data and identify the theoretical frequencies :

```
x O_ 1 2 3 4 5 < < 7 8
y : 56 156132 92 37 22 400 1
```

33. The steal nails packed to distribute to local stores by a certain company have an average length of 5 centimeters and a standard deviation of 0.05 centimeters. Assuming that the lengths are normally distributed, what percentage of the nails are :
(a) Longer than 5.05 centimeters.
(b) Between 4.95 and 5.05 centimeters in length.
(c) Shorter than 4.90 centimeters.
34. As a part of the research on nutrition, a group of researchers applied a particular protein diet for a large group of mice. They claim that the diet results in increases of the gain in weight. Assuming that it is known from previous studies that $\mathrm{cI}=4.5$ grams, how many mice should be included in our sample if we wish to be 95% confident that the mean weight of the sample will be within 3 grams of the population mean for all mice subjected to this protein diet.
35. From two different normal populations, samples of sizes $n_{1}=26$ and $n_{2}=38$ are taken independently. The mean of 26 samples taken from first population is noted as $\mathrm{xl}, \mathrm{a} 78$ and the mean of 38 samples taken from second population is recorded as $\mathrm{x}_{2}=74$. The population standard deviations of the two normal populations are $\mathrm{a}_{1}=4.9$ and $\mathrm{cT}_{2}=3.2$ respectively. Test the hypothesis that kry $=$ against the alternative $\mathrm{v}_{\mathrm{i}} \#$ p.2.
36. Explain Chi-square test of independence. Using following data on 100 students test whether gender and ability in Mathematics are associated :

Ability in Maths -->	Poor	Average	Excellent
Boys	10	15	25
Girls	25	10	15

