\qquad

SECOND SEMESTER M. S c. DEGREE EXAMINATION, JUNE 2019 (CUCSS)

Mathematics
MT 2C 07—ALGEBRA—II
(2016 Admissions)
Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

1. Verify whether $Z / 4 Z$ is an integral domain.
2. Find irr (NI $2+\ldots$ Q).
3. Show that $\mathrm{Q}(-4,-\mathrm{M}$ is a simple extension.
4. Find the degree $[(0,(0): Q]$ where co is a non-real cube root of unity.
5. Let $\mathrm{a}=\mathbf{1}+2 \mathrm{i}$ be a complex number. Show that $\mathrm{R}(\mathrm{a})=\mathrm{C}$.
6. Find all automorphisms of $Q(, r)$.
7. Is f constructible. Justify your answer.
8. Verify whether $\mathrm{F}=\{0,1, \mathrm{a}, 1+\mathrm{a}\}$ is a subfield of Zi where Z 2 is an algebraic closure of Z_{2} containing a zero a of $\mathrm{x}^{2}+x+1$.
9. Let a be an automorphism of $\mathrm{Q}(\mathrm{I}, \mathcal{\beta})$ such that $\mathrm{a}(\mathrm{V} 2)=$ and $\mathrm{a}(, / \mathrm{a})=$-Id. Find the fixed field of a.
10. Find the index $\{\mathrm{Q}(\mathrm{f}) \cdot \mathrm{Q}\} \bullet$
11. List the elements of the Galois group $G(Q R / Q)$.
12. Describe an extension K of Q such that $G(K / Q)$ is of order 3 .
13. Verify whether $\mathrm{x}^{3}-1$ is a cyclotomic polynomial.
14. Show that $\mathrm{x}^{3}-1$ is solvable by radicals over Q .

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Show that $Z_{i o} / I$ is a field where I is the ideal generated by ${ }^{5}$ in Zicr
16. Verify whether the field C of complex numbers is an algebraic extension of the field CP of rational numbers.
17. Let a be an algebraic element over a field F and p c $F(a)$. Show that 3 is algebraic over F.
18. Let a be algebraic over a field E. Verify whether a is algebraic over every subfield F of E.
19. Show that if F is a finite field of characteristic p then F is an extension of Z.
20. Let E be an extension of a field F and $a_{\mathrm{E}} \mathrm{E}$ be algebraic over F . Let n be an automorphism of E leaving F fixed and $\mathrm{u}(\mathrm{a})=13$. Show that $\operatorname{irr}(a ; \mathrm{F})=\operatorname{irr}((3 ; \mathrm{F})$.
21. Show that $Q\left(a^{-}, \quad\right.$ is a splitting field over Q.
22. Find all automorphisms of the field $\mathrm{Q}(\mathrm{i})$ where i is square root of -1 .
23. Let K be the splitting field of $\left(x^{2}-2\right)\left(x^{2}+2\right)$ over Q. Describe the Galois group $G(K / Q)$.
24. Show that a regular 7 -gon is not constructible by straight edge and compass.
(7 x $2=14$ weightage)

Part C

Answer any two questions.
Each question carries 4 weightage.
25. (a) Show that if F is a field then the polynomial ring $F[x]$ is a principal ideal ring.
(b) Show that an ideal $(p(x))$ in $\mathrm{F}[\mathrm{x}]$ is maximal if and only if $p(x)$ is irreducible.
26. Let E be an extension of a field F and $\mathrm{a}_{\mathrm{E}} \mathrm{E}$ be algebraic over F . Show that
(a) There exists an irreducible polynomial $p(x) E \mathrm{~F}[\mathrm{x}]$ such that $\mathrm{p}(\mathrm{a})=0$.
(b) If $q(x)$ is also an irreducible polynomial such that $\mathrm{q}(\mathrm{a})=0$ then $p(x)$ and $q(x)$ have same degree.
27. (a) Let F be a finite field of q elements. Show that $q=p^{\prime \prime}$ for some natural number n where p is the characteristic of F .
(b) Show that if F and F^{\prime} are finite fields having the same number of elements then F and F^{\prime} are isomorphic.
28. (a) Define the nth cyclotomic polynomial (I) (x) over a field F.
(b) Show that the Galois group of the 5 th cyclotomic polynomial over Q is a cyclic group of order 4.

