Iteg. No.....

Maximum : 36 Weightage

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2019 (CUCSS)

Mathematics

MT 2C 10-ODE AND CALCULUS OF VARIATIONS

(2016 Admissions)

Time : Three Hours

Part A

Answer **all** the questions. Each question carries 1 weightage.

Find a power series solution of the form $Ea_n x''$ of the equation $y' = (1-x^2)^{-\frac{1}{2}}$. 1.

2. Determine the nature of the point x = 0 for the equation $x^3 y'' + (\sin x)y = 0$.

3. Show that $\sin x = x \lim_{a \to x} Fa$, a, 2, $\frac{x}{a^2}$

4. Transform the equation $({}^{1-e}Y' + \frac{i}{2}Y e Y = {}^{0}$ into a hypergeometric equation.

5. Show that $P_{en}(0) = \frac{1.3...(2n-1)}{2^n \cdot n!}$ where $P_n(x)$ denotes the nth degree Legendre polynomial.

- 6. Prove that $r_n I = n!$ for any integer n 0.
- 7. Show that $dx^{[x,Ji(x)]} = xJ_0(x)$.

8. Describe the phase portrait of the system $\frac{dx}{dt} = 1$, $\frac{dy}{dt} = 2$.

9. Find the critical points of the system :

$$\frac{dx}{dt} \quad y(x^2) = \mathbf{A} = -\mathbf{x}(\mathbf{x}^2 + \mathbf{1})$$

Determine whether the function $-2x^2 + 3xy - y^2$ is positive definite, negative definite or neither. 10.

State Picard's theorem. 11.

Turn over

Name.....

(Pages: 3)

C 63077

(14 x 1 = 14 weightage)

12. Show that $f(x,y) = y^{112}$ satisfies a Lipschitz condition on the rectangle Ix I 1, 1 < y 2.

- 13. Find the stationary function of $[x.Y' (y \ 121)]$ which is determined by the boundary conditions y(0) = 0, y(4) = 3.
- 14. Find the normal form of Bessel's equation $x^2y'' + xy' (x^2 \dots y = 0)$.

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Find the general solution of the equation $(1 + x^2)y'' + 2xy' 2y = 0$.
- 16. Find the indicial equation and its roots of the equation $x^3y'' + (\cos 2x 1)y' + 2xy = 0$,
- 17. Show that the solutions of the equation $(1 x^2 y'' 2xy' + n(n+1)y = 0$, where n is a non-negative integer, bounded near x = 1 are precisely constant multiples of F $\begin{vmatrix} -n, n+1, 1, \frac{1}{2} \end{vmatrix}$ -
- 18. Obtain the Bessel function of the first kind $\int_{P}(x)$.
- 19. Prove that the positive zeros of $J_{P}(x)$ and $J_{p+i}(x)$ occur alternately, in the sense that between each pair of consecutive positive zeros of either there is exactly one zero of the other.
- 20. Determine the nature of stability properties of the critical point (0, 0) for the system :

$$\frac{dx}{dt} = 5x + 2y, \frac{dy}{dt} = -17x - 5y.$$

21. Show that (0, 0) is an asymptotically stable critical point of the system :

$$\frac{dx}{dt} = y \overset{3}{\approx} \frac{dy}{dt} = x - y.$$

22. Let u(x) be any non-trivial solution of u'' + q(x)u = 0, where q(x) > 0 for all x > 0. Show that if

 $\int_{0}^{1} q(x) dx = oo$, then u(x) has infinitely many zeros on the positive x-axis.

- 23. Find the exact solution of the initial value problem $y' = y^2$, y(0) = 1. Starting with $y_0(x) = 1$, apply Picard's method to calculate $y_i(x)$, $y_2(x)$, $y_3(x)$, and compare these results with the exact solution.
- 24. Using the method of Lagrange's multipliers, find the point on the plane ax + by + cz = d that is nearest the origin.

(7 x 2 = 14 weightage)

Part C

Answer any two questions. Each question carries 4 weigh.tage.

- 25. Calculate two independent Frobenius series solutions of the equation $2x^2y''+xy' (x + 1)y 0$.
- 26. Solve the hypergeometric equation x(1-x)y'' + [c (a + b + 1)x]y' aby = 0, near its singular point x = 0,
- 27. Find the general solution of the system :

$$\frac{-dx}{dt} \qquad 4x - y, \quad at = x - 2y.$$

28. Let f(x, y) be a continuous function that satisfies a Lipschitz condition $(x,y_i) - f(x, y_2)$ - y21 on a strip defined by a x < b and - a < y < 00. If (x_0, y_0) is any point of the strip, then show that the initial value problem y' = f(x, y), $y(x_0) = y_0$ has one and only one solution y f(x) on the interval $a \le x \le b$.

 $(2 \ge 4 = 8 \text{ weight: age})$