C 62623

(Pages:3)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2019

(CUCBCSS-UG)

Mathematics

MAT 2C 02—MATHEMATICS

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Types)

Answer all twelve questions.

I. Define a sequence.

- 2. Fill in the blanks $\frac{d}{dx} \cosh^3(3x) =$ _____
- 3. For what values of real numbers *x*, does the series $\frac{\sin^g x \operatorname{converge}}{n=1}$?
- 4. Fill in the blanks : The polar equation of the circle with centre origin and radius a is -----
- 5. Find the nth term of the sequence 2, 2, 2, 2

6. Fill in the blanks : If $f(x, y) = 1 - \sinh(1 - xy)$, then $f_x(1, 1)$.

7. Fill in the blanks: If f is continuous on [a, b), then $\lim_{c \to b} \frac{(t) dt = -}{b}$

- 8. Write explicitly the ratio test for the convergence of the series an = 0
- 9. State alternating series test of Leibniz.
- 10. Define $f(\mathbf{x}, \mathbf{Y})$ using limit.
- 11. The power series a_{i} (x = a) always converges to a_0 when x = -
- 12. What do you mean by linearization of a function in two variables at a point.

(12 x 1 = 12 marks)

Turn over

2

Part B (Short Answer Types)

Answer any nine questions.

13. Evaluate $f \sinh^2 x \, dx$.

- 14. Test the convergence of the integral $\oint_{0}^{/2} e^{-2x} dx$.
- 15. State the non-decreasing sequence theorem.
- 16. Describe the level surface of the function $f(x, y, z) = Jx^2 + y^2 + z^2 = 1$.
- 17. Graph the sets of points whose polar co-ordinates satisfy the condition 0 < r < 2.

18. Evaluate $\int_{0}^{I_{i}} 3 dx$ $0 V4 + 9x^{2}$.

- 19. Find $\tanh x$, if $\cosh x = \frac{17}{15}$, x > 0.
- 20. Show that $\mathbf{w}^{\mathbf{a}^2}\mathbf{f} = \mathbf{0}$ if $\mathbf{f}(\mathbf{x}, \mathbf{y}) = log NIX^2 + y^2$.
- 21. Find a cylindrical co-ordinate equation for the surface $x^2 + 3)^2 = 9$.
- 22. Find $\frac{1}{ar}$. z = x + 2y, x = -and y 2rs.
- 23. Find Ern $\frac{1}{2n+1}$
- 24. Write the Maclaurin series for $\sin x$.

(9 x 2 = 18 marks)

Part C (Short Essay Types)

Answer any **six** questions.

25. Find the length of the curve $y = \frac{2v^2}{3} \frac{x^2}{x^2 - 1}$ from x = 0 to x = 1.

26. Find the limit of the function $f(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^2 - xy}{\mathbf{vx}^2 - x}$ to (0, 0).

- 27. Replace the polar equation $r = \frac{4}{2\cos 0 \sin^{\circ}}$ by equivalent Cartesian equation and the draw the graph in Cartesian form.
- 28. Find a power series for log (1 + x) and find the radius of convergence of that series.
- 29. Show that tank-1 x = 2 $(1+x)^{1}$
- 30. Find the volume of the solid of revolution when the region between the parabola $x = y^2 4 1$ and the line x = 3 is revolved about the line x = 3.
- 31. Find the sum of the series $\underset{n=1}{2'-1} 4n \bullet$
- 32. Find the radius and interval of convergence of the series $\frac{\mathbf{E} (-1)n}{n=0} (2x-1)^n$.
- 33. Evaluate : $\int_{\mathbf{j}}^{r \cos h^4} d\mathbf{x}$.

(6 x 5 = 30 marks)

Part D (Essay Types)

Answer any two questions.

- 34. Show that the function $f(x,y) = \frac{1}{x^2 + y^2}$ when $(x,y)^* (0,0)$ and 0, otherwise is continuous everywhere except at the origin.
- 35. (a) Find the linearization of the function $f(x, y) = x^2 xy + y^2 / (x + 3) = x^2 + 3$ at (3, 2).

(b) Find the area of the region enclosed by the cardioid : $r = 2(1 + \cos 0)$.

36. Find the area of the surface generated by revolving the curve $y = x^3 / 9, 0 < x^2$ about the x-axis.

(2 x 10 = 20 marks)