(Pages: 3)
Name \qquad
Reg. No \qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2019

 (CUCBCSS-UG)
Mathematics

MAT 2C O2—MATHEMATICS
Time : Three Hours
Maximum : 80 Marks

Part A (Objective Types)

Answer all twelve questions.
I. Define a sequence.
2. Fill in the blanks $\cdot \frac{d}{d x} \cosh ^{3}(3 x)=$ \qquad
3. For what values of real numbers x, does the series $\sin ^{g} x=1$ converge ?
4. Fill in the blanks : The polar equation of the circle with centre origin and radius a is \qquad
5. Find the $\mathrm{n}^{\text {th }}$ term of the sequence $2,-2,2,2$
6. Fill in the blanks : If $f(x, y)=1-\sinh (1-x y)$, then $f_{x}(1,1)$.
7. Fill in the blanks: If f is continuous on $[a, b)$, then $\lim _{c} \int_{b}(t) d t=$
8. Write explicitly the ratio test for the convergence of the series ${ }_{n=0}^{\text {ane }}$
9. State alternating series test of Leibniz.
10. Define - $f(\mathrm{x}, \mathrm{Y})$ using limit.

12. What do you mean by linearization of a function in two variables at a point.

$$
\text { (12 x } 1=12 \text { marks) }
$$

13. Evaluate $\underset{0}{\mathrm{f}} \sinh ^{2} x d x$.
$\oint_{1}-2 x \mathrm{dx}$.
14. State the non-decreasing sequence theorem.
15. Describe the level surface of the function $f(x, y, z)=J x 2+y 2+z^{2} \quad 1$.
16. Graph the sets of points whose polar co-ordinates satisfy the condition $0<r<2$.
17. Evaluate $\begin{aligned} & \mathcal{l}_{i} \text { 3ax } \\ & { }_{0} \mathrm{~V} 4+9 \mathrm{x}^{2}\end{aligned}$
18. Find $\tanh x$, if $\cosh \mathrm{x}=\frac{17}{15}, x>0$.
19. Show that eie $\mathbf{a}^{2} \mathbf{f}=\mathbf{0} \mathbf{i f} \mathbf{f}(\mathbf{x}, \mathrm{y})=\log N \mathrm{~N} X^{2}+y^{2}$.
20. Find a cylindrical co-ordinate equation for the surface $\left.x^{2}+-3\right)^{2}=9$.
21. Find $\overline{a r} \cdot z=\mathrm{x}+2 \mathrm{y}, x=\stackrel{r}{-}$ and y 2 rs .
22. Find $\underset{n}{\underset{n}{\operatorname{Ern}}} \overline{2 n+1}$
23. Write the Maclaurin series for $\sin x$.
($9 \times 2=18$ marks)
Part C (Short Essay Types)
Answer any six questions.
24. Find the length of the curve $\mathrm{y}=\frac{2 \mathrm{v}^{-} \mathrm{x}^{3}}{3} \mathrm{x}^{2}-1$ from $\mathrm{x}=0$ to $x=1$.
25. Find the limit of the function $f(x, y) \xlongequal[x^{2}-x y]{v x}-1-$ as (x, y) tends to $(0,0)$.
26. Replace the polar equation $r=\frac{4}{2 \operatorname{coso}-\sin ^{\circ}}$. by equivalent Cartesian equation and the draw the graph in Cartesian form.
27. Find a power series for $\log (1+x)$ and find the radius of convergence of that series.
28. Show that tank-1 $x=2 \frac{(1+x 1}{1-x}$.
29. Find the volume of the solid of revolution when the region between the parabola $x=y^{2} 4-1$ and the line $x=3$ is revolved about the line $x=3$.
30. Find the sum of the series $\underset{n=1}{L} \quad \begin{aligned} & 2 n^{\prime}-1 \\ & 4 n\end{aligned}$
31. Find the radius and interval of convergence of the series: $\underset{n=0}{E}(-1) n(2 x-1)^{n}$.
32. Evaluate : $\mathbf{j}^{\cos h^{4}} \mathrm{dx}$.

Part D (Essay Types)

Answer any two questions.
34. Show that the function $f(x, y)$
$x^{2_{4+45}}{ }^{2}$ when $(x, y)^{*}(0,0)$ and 0 , otherwise is continuous everywhere except at the origin.
35. (a) Find the linearization of the function $f(x, y)=x^{2}-x y+y^{2} / 2+3$ at $(3,2)$.
(b) Find the area of the region enclosed by the cardioid : $r=2(1+\cos 0)$.
36. Find the area of the surface generated by revolving the curve $y=, x^{3} / 9,0<x \quad 2$ about the x -axis.

$$
(2 \times 10=20 \text { marks })
$$

