\qquad

SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION MAY 2019

B.Sc. Statistics
STS 2C 02—PROBABILITY DISTRIBUTIONS

Time : Three Hours
Maximum : 80 Marks

Section A
 Answer all questions in one word.
 Each question carries 1 mark.

Name the following :

1. The second central moment of a random variable X.
2. $\mathrm{E}\left[e^{i t x}\right]$ of a random variable X .
3. Probability distribution of the random variable X denoting the number of failures before the first success in an experiment with only two possible results success and failure.

Fill up the blanks :
4. Pearson's co-efficient of correlation between two random variables satisfying the linear relation $2 x+3 y-5=0$ perfectly is \qquad
5. Probability density function of X following $U[2,5]=$

6. X and Y are two random variables with bivariate m.g.f. function, $M_{x}, y\left(t_{1}, t_{2}\right)$ is expressed in terms of expectation as \qquad
7. The range of variation of beta distribution of second kind is

Write True or False :
8. m.g.f. exists for all the random variables.
9. Normal distribution is symmetric about its median.
10. Central limit theorem discusses the convergence of sum of random variables to normal distribution.

Section B

Answer all questions in one sentence.

Each question carries 2 marks.
11. Find the mean of a random variable X with first moment about 4 is given as 7 .
12. $f(x, y)$ is the joint p.d.f. of two continuous random variables X and Y . Write any two of its properties.
13. Write the mean and variance of a binomial distribution with parameters $(15,0.3)$.
14. Define covariance of X and Y.
15. If $p(x, y)=\frac{(2 \mathrm{x}+\mathrm{y})}{10}$, where $x=0.1$ and $\mathrm{y}=1.2$ is a joint p.m.f. of X and Y , write the p.m.f. of X .
16. State Bernoulli's law of large numbers.
17. Define lognormal distribution.

$$
(7 \times 2=14 \text { marks })
$$

Section C

Answer any three questions.
Each question carries 4 marks.
18. First three raw moments of X are $-1,55$ and -62.5 . Obtain co-efficient of skewness based on moments.
19. State and prove Cauchy-Schwartz inequality.
20. For a random variable $X, P(X=3)=2 P(X=4)=P(X=5)$. Find $V(X)$.
21. Obtain the m.g.f. of X following Poisson distribution with parameter A ,.
22. The repair time of a machine follows exponential distribution with an average of 2 hours. What is the probability that the repair time will be more than 2 hours ?

$$
(3 \times 4=12 \text { marks })
$$

Section D

Answer any four questions.

Each question carries 6 marks.
23. $f(x, y)=e^{-} x^{-} Y, X>0, y>0$ be the joint p.d.f. of (X, Y). Find the bivariate m.g.f. of (X, Y) and hence show that X and Y are independent.
24. Show that $\mathrm{E}(\mathrm{XY})=\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})$ need not imply X and Y are independent.
25. For two random variables X and Y, the joint p.d.f.

$$
\begin{aligned}
f(x, y) & =2 \\
& =0, \text { otherwise } \quad . \text { Find } \mathrm{E}(\mathrm{X}) \text { and } \mathrm{E}(\mathrm{Y}) .
\end{aligned}
$$

26. If $X-N \quad Y N\left(12, a_{2}\right)$, obtain the distribution of $a X+b y$ when X and Y are independent.
27. If $\mathrm{X}-\mathrm{N}(12,4)$. Obtain (i) $\mathrm{P}(\mathrm{X} 520)$; (ii) \mathbf{P} (O S X 24) ; and (iii) $\mathrm{P}(\mathrm{IX}-121>8)$.
28. State and prove Tchebychev's inequality.

Section E

Answer any two questions.
Each question carries $\mathbf{1 0}$ marks.
29. Let X and Y are two random variables with joint p.d.f. $f(x, y)=x+y ; 0<x<1 ; 0<y<1$. Compute the coefficient of correlation between X and Y .
30. Obtain the m.g.f. of X following binomial distribution with parameters n and p. Hence state and prove the additive property of binomial distribution. If X and Y are independent binomial random variables with parameters $(6,0.5)$ and $(4,0.5)$ respectively, calculate $P(X+Y 3)$.
31. If $\mathrm{X}-(\mathrm{kt}, \mathrm{a})$, prove that (a) $\left.\frac{\mathrm{X}-\mu}{\mathrm{a}} \mathrm{N}, 1\right)$; (b) The quartile deviation of X is 0.6745 a .
32. State and prove Weak law of large numbers. Examine whether WLLN hold good for the sequence of random variables $\{\mathrm{X}\},, i=1,2, \ldots$ where $\mathrm{P}(\mathrm{X},= \pm \mathrm{J} 2 \mathrm{i}-1)=0.5$.

