\qquad

SECOND SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MAY 2019

B.Sc.-Mathematics
MAT 2B O2—CALCULUS

Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type)

Answer all twelve questions.
Each question carries 1 mark.

1. Find $\lim _{x^{-4-}}{ }_{c o}{\underset{X}{\mathrm{X}}}_{\mathrm{x}-\mathrm{I}-\mathrm{O}^{\prime}}^{5}$
2. Find absolute extrema of $y=x^{2}$ on (0,2).
3. Find $d y$ if $y=6 \cos x^{5}$.
4. Find the interval in which $y=x^{3}$ is concave up.
5. Suppose ${ }_{\mathrm{J} 2}^{\mathrm{r} 3} f(x) d x-6$. Find $-\mathrm{j}_{3}^{\mathrm{r} 2} f(x) d x$.
6. Express the limit $\lim _{\mathrm{Al}^{-4} \circ_{k-1}}\left(\mathrm{e}_{\mathrm{k}}^{2}-3 e_{k} A x k\right.$ as an integral, where P is the partition of $[-7,5]$.
7. Define average value of a function f on $[a, b]$.
8. Find all possible functions with derivative $y^{\prime}=x^{2}$.
9. Evaluate $\mathrm{J}_{\mathrm{o}}^{7 \mathrm{c} / 2} \sin ^{2} x d x$.
10. Write the sum ${ }_{k=1}^{5} k(3 k+5)$ without sigma notation.
11. State Mean Value Theorem.
12. Evaluate $1_{1} x^{2 / 3} \mathrm{dx}$ •

Part B (Short Answer Type)

Answer any nine questions.
Each question carries 2 marks.
13. Find $\lim \frac{2-t+\sin t}{t+\cos t}$
14. Evaluate $\frac{E_{k=1}^{E}}{k 3}$
15. Find the average value of the function $f(t)=\sin t$ on $[0,2$ it 1 -
16. Express the solution of the initial value problem $\frac{d y}{d x}=\tan x, y(1)=5$ as an integral.
17. Find $\frac{d y}{c x}{ }^{F r} r \cos t d t$.
18. Find absolute extrema values of $g(t)=8 t-\mathrm{t}^{4}$ on $[-2,1]$.
19. Suppose that f is continuous and that $\mathrm{J}_{0}^{5} f(z) d z=3$ and $\mathrm{j}_{0}^{6} f(z) d z=7$. Find $\boldsymbol{r}_{5} f(z) d \approx$
20. The region between the curve $\mathrm{y}={ }_{1} \mathrm{G}, 0<x<4$ and the x -axis is revolved about the x -axis to generate a solid. Find its volume.
21. Find the work done by the force $F(x)={\underset{x}{x}}^{1} N$ along x-axis from $x=1 m$ to $x=10 m$.
22. Find $\lim _{x} \sin _{X} 2 x$
23. Evaluate $.1^{71 / 3} 2 \sec ^{\mathrm{t}} x \mathrm{~d} x$.
24. Find the interval in which $f(x)=-x^{2}-3 x+3$ is increasing and decreasing.
$(9 \times 2=18$ marks $)$

Part C (Short Essay Type)

Answer any six questions. Each question carries 5 marks.
25. Find asymptotes of the graph of $f(x)=\begin{aligned} & x^{2}-3 \\ & 2 x-4\end{aligned}$
26. Find $\lim _{x-4 .} 3 x-7^{1}$.
27. If b, c and d are constants, for what value of b will be the curve $\mathrm{y}=\mathrm{x}^{3}+\mathrm{bx}^{2}+c x+d$ have a point of inflection at $\mathrm{x}=1$?
28. Suppose that $f(-1)=3$ and that $f^{\prime}(x)=0$ for all $x \mathrm{E}$ R. Must $f(x)=3$? Give reasons for your answer.
29. Find the intervals on which $g(x)=-x^{3}+12 \mathrm{x}+5,-3 \quad x<3$ is increasing and decreasing. Where does the function assume extreme values and what are these values?
30. Find the area of the region enclosed by $x=2 y^{2}, x=0$ and $y=3$.
31. Find the volume of the solid generated by revolving the region bounded by $y=I X$ and the lines $\mathrm{y}=1, x=4$ about the line $\mathrm{y}=1$.
32. Find the length of the curve $=^{, 3}+-\frac{-}{\mathrm{y}}$ from $\mathrm{y}=\mathbf{1}$ toy $=$
33. Show that center of mass of a straight, thin strip or rod of constant density lies halfway between its two ends.

$$
(6 \times 5=30 \text { marks })
$$

Part D (Essay Type)

Answer any two questions.
Each question carries 10 marks.
34. Find the center of mass of a thin plate of constant density 5 covering the legion bounded above by parabola $y=4-x^{2}$ and below by x-axis.
35. A spring has a natural length of 1 m . A force of 24 N stretches the spring to a length of 1.8 m .
(a) Find the force constant k.
(b) How much work will it take to stretch the spring 2 m . beyond its natural length?
(c) How far will a 45 N force stretch the spring ?
36. What values of a and b make $\mathrm{f}(x)=x^{3}+a x^{2}+b x$ have,
(a) A local maximum at $x=-1$ and a local minimum at $\mathrm{x}=3$.
(b) A local minimum at $\mathrm{x}=4$ and a point of inflection at $x=1$?

$$
\text { (} 2 \times 10=20 \text { marks })
$$

