\qquad

Reg. No. \qquad

SECOND SEMESTER (CUCBCSS——UG) DEGREE EXAMINATION MAY 2019

B.C.A.

BCA 2C 04-NUMERICAL METHODS IN C.

(2014 Admissions)
Time : Three Hours
Maximum : 80 Marks

> Part A (Objective Type)
> Answer all ten questions.
> Each question carries 1 mark.

1. 0.00056 has $=$ significant digits.
2. Relative error $\mathrm{E}_{\mathrm{r}}=\square$
3. Absolute error because of rounding off is \qquad
4. After n bisections, the length of the subinterval which contains x_{n} is \qquad
5. Newton-Raphson method is convergent :
(a) Linearly.
(b) Quadratically.
(c) Cubically.
(d) Biquadratically.
6. What is the other name of Regula Falsi method ?
7. When Gauss elimination method is used to solve $\mathrm{AX}=\mathrm{B}, \mathrm{A}$ is transferred in a $=\boldsymbol{\sim}$ matrix.
8. State true or false: In Gauss-Jordan method, finding the values of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}$, by using the process of back substitution.
9. Define the backward difference operator.
10. The error in Simpson's one-third rule is of the order \qquad
(10 x $1=10$ marks $)$

Part. B (Short Answer Type)
Answer all five questions.
Each question carries 2 marks.
11. Find the relative error of the number 8.6 if both of its digits are correct.
12. Show that Newton-Raphson formula to find b can be expressed in the form $\left.{ }^{1} \mathrm{n} .+\mathrm{i}=\frac{1}{2} \right\rvert\, \mathrm{xy}, \quad \frac{a}{\mathrm{x},,} \mathrm{J}$, n $\quad 0,1,2,3, \ldots$.
13. Solve by Gauss-Jordan method : $2 \mathrm{x}-\mathrm{E} \mathrm{y}=3,7 \mathrm{x}-3 \mathrm{y}=4$.
14. Find $\left(\tan ^{-1}\right.$
15. Using Euler's method, solve $\mathrm{y}^{\prime}=x+\mathrm{y}, \mathrm{y}(0)=1$ for $h=0.5$.

Part C (Short Essay Type)
Answer any five questions.
Each question carries 4 marks.
16. Define error and write the main three error sources.
17. Find a positive root of $x e x=2$ by the method of false position correct to 2 decimal places.
18. Solve by Gauss Elimination method $2 x+3 y-z=5,4 x+4 y-3 z=3,2 x--3 y+2 z=2$.
19. Using Lagrange's formula of interpolation find y (9. 5), given :

$\mathrm{x}:$	7	8	9	10
$y=$	3	1	1	9

20. Find $\mathrm{A}^{3} f(x)$ if $f(x)=(3 x+1)(3 x+4)(3 x+7) \ldots(3 x+19)$.
21. Prove that $A=\underset{2}{ } 5^{2}+5 \stackrel{r}{j i}$
22. The table given the results of an observation 0 is the observed temperature in degrees centigrade of a vessel of cooling water; t is the time in minutes from the beginning of observation.

| $t:$ | 1 | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0:$ | 85.3 | 74.5 | 67.0 | 60.5 | 54.3 |

Find the approximate rate of cooling at $t=3$.
23. Evaluate $\mathrm{J}_{\mathrm{if}}^{\mathrm{J}} \mathrm{dx}+\mathrm{x}$ 2 using Trapezoidal rule with $h=0.2$.
(5 x $4=20$ marks)

Part D (Essay Type)

Answer any five questions.
Each question carries 8 marks.
24. (a) Write down the rules to round-off numbers.
(b) Sum of the following numbers $0.1532,15.45,0.000354,305.1,8.12,143.3,0.0212,0.643$ and 0.1743 when in each of which all the given digits are correct.
25. (a) Solve the equation $\mathrm{x} \tan x=-1$ by Regula Falsi method starting with $\mathrm{a}=0.25$ and $b=3$ correct to 3 decimal places.
(b) Find the root of $4 x-$ et $=0$ that lies between 2 and 3 using Newton's method.
26. Solve the system by Gauss-Jordan method :

$$
\begin{aligned}
& x+y+z+w=2,2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}-\mathrm{w}-5, \\
& 3 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}+4 \mathrm{w}=7, \mathrm{x}-2 \mathrm{y}-3 \mathrm{z}+2 w=5 .
\end{aligned}
$$

27. (a) Find the forward difference of $x(x+4)(x+8)$.
(b) Find $\mathrm{A}^{\mathrm{n}}(\cos (a x+b))$.
28. The following data are taken from the steam table

Temp. ${ }^{\circ} \mathrm{C}$	140	150	160	170	180
Pressure kgficm ${ }^{2}$.	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t \quad 175^{\prime}$.
29. From the data given below, find the number of students whose weight is between 60 and 70 :

31. Solve the equation $\frac{d y}{d x}=1$-y given y (0) 0 using Modified Euler's method and tabulate the solutions at $\mathrm{x}=0.1,0.2$, and 0.3 .

$$
(5 \times 8=40 \text { marks })
$$

