SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION, MAY 2019

B.C.A.
BCA 2C 03-COMPUTER ORIENTED STATISTICAL METHODS

(2014 Admissions)
Time : Three Hours
Maximum : 80 Marks

Part A
Answer all questions.
Each question carries 1 mark.

1. Sum of deviations observations from their arithmetic mean is \qquad
2. is theraphical method studying dispersion.
3. Set of all possible outcomes of a random experiment is known as

4. Three unbiased coins are tossedis thaprobability of getting at least one head.
5. Two random variables are said to be independent if $f(x, y)=$ \qquad
6. A distribution for which mean is greater than variance is \qquad
7. Standard deviation of sampling distribution of a statistic is called \qquad
8. The square of Standard. Normal distribution is \qquad
9. The joint distribution of sample observations is called \qquad
10. If t_{r} is consistent for $0, \mathrm{t}_{\mathrm{n}}{ }^{2}$ is consistent. for

$$
(10 \times 1=10 \text { marks })
$$

Part B (Short Answer Type Questions)

Answer all questions.
Each question carries 2 marks.
11. For any two positive numbers, prove that $\mathrm{AH}=\mathrm{G}^{2}$, where A is the arithmetic mean, G is the geometric mean, and H is the harmonic mean.
12. Give classical definition of probability.
13. Define random variable and give two examples.
14. Define F-statistiL
15. What is a mean by a statistical hypothesis? Explain simple and composite hypothesis.

$$
\text { (5 x } 2=10 \text { marks })
$$

Part C (Short Essay Type Questions)

Answer any five questions.
Each question carries 4 marks,
16. Explain the method of constructing a Lorenz curve.
17. Prove that standard deviation is independent of change of origin, but not of scale.
18. Let $\mathrm{B} \mathrm{c}_{-} \mathrm{A}$, prove that (i) $\mathrm{P}\left(\mathrm{A} n B^{c}\right)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$; and (ii) P (B) $\mathrm{P}(\mathrm{A})$.
19. The p.d.f, of a random variable X is given by $f(x)=k x(1-x) ; O<x 1$:
(i) Find the value of k.
(ii) Obtain the distribution function of X .
20. Define the moment generating function of a random variable. Explain how you will obtain moments from a moment generating function.
21. Obtain the sampling distribution of mean of the samples from a Normal population.
22. Obtain the interval estimate of variance of a Normal population.
23. Obtain the maximum likelihood estimator of parameter of a Poisson population.

$$
\text { (5 x } 4=20 \text { marks })
$$

> Part D (Essay Questions)
> Answer any five questions.
> Each question carries 8 marks.
24. Obtain the co-efficient variation for following data :
Length of life (in hours) : 500-700
L 700--900
No.of bulbs
25. Fit a straight line to the following data:

Year	1992	1994	1996	1998	2000	2002	2004
Production	77	81	88	94	94	96	98

26. Find the co-efficient of correlation between X and Y from the following data :

15.5	16.5	17.5	18.5	19.5	20.5
75	60	50	50	45	40

27. The two lines of regression are given by $8 x-10 y-4-66=0$ and $40 x-18 y=214$:
(a) Identify the regression lines.
(b) Find the mean values of X and Y .
(c) Find the correlation co-efficient between X and Y .
(d) Find the standard deviation of Y , if the standard deviation of X is 3 .
28. From a group of 3 Indians, 4 Pakistanis and 5 Americans, a sub-committee of four peoples is selected by lots. Find the probabilities that the sub-committee will consist of :
(a) 2 Indians and 2 Pakistanis.
(b) 1 Indian, 1 Pakistani and 2 Americans.
(c) At least one Indian.
29. A random variable X has the p.m.f. given by :

X	$-\mathbf{3}$	$\mathbf{- 1}$	0	1	2	3
$\mathrm{f}(\mathrm{x})$	k^{2}	$2 \mathrm{k}^{2}+k$	$2 \mathrm{k}^{2}+3 \mathrm{k}$	$4 \mathrm{k}^{2}+5 \mathrm{k}$	$3 \mathrm{k}^{2}+3 \mathrm{k}$	$2 \mathrm{k}^{2}+k$

(a) Find the value of k.
(b) Obtain the distribution function of X
(c) Find $P(X>1)$ and $P(X 52)$.
30. From a Normal population $\mathrm{N} \mathbf{S}^{2}$), obtain :
(a) The MLE of p when 6^{2} is known.
(b) The MLE of 0^{2} when μ is known.
31. Let $x_{1}, x_{2}, \ldots, x_{9}$ is a random sample of size nine taken from a Normal population N 25). To test $H_{o}: \mu=5$ against $H_{1}: p,=6$, the critical region suggested is 7 where x is the sample mean. Find the significant level and power of the test.

