(Pages:3)

Name

Reg. No

SECOND SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MAY 2019

B.C.A.

BCA 2C 03—COMPUTER ORIENTED STATISTICAL METHODS

(2014 Admissions)

Time : Three Hours

Maximum : 80 Marks

Part A

Answer **all** questions. Each question carries 1 mark.

1. Sum of deviations observations from their arithmetic mean is _____

2. <u>is the grap</u>hical method studying dispersion.

3. Set of all possible outcomes of a random experiment is known as —

4. Three unbiased coins are tossed ________ is the probability of getting at least one head.

5. Two random variables are said to be independent if f(x, y) = ------

6. A distribution for which mean is greater than variance is ———

7. Standard deviation of sampling distribution of a statistic is called ———

8. The square of Standard. Normal distribution is

9. The joint distribution of sample observations is called

10. If t_p is consistent for 0, t_p^2 is consistent. for _____

(10 x 1 = 10 marks)

Part B (Short Answer Type Questions)

Answer **all** questions. Each question carries 2 marks.

- 11. For any *two* positive numbers, prove that $AH = G^2$, where A is the arithmetic mean, G is the geometric mean, and H is the harmonic mean.
- 12. Give classical definition of probability.
- 13. Define random variable and give two examples.

Turn over

C 62632

- 14. Define F-statistiL
- 15. What is a mean by a statistical hypothesis? Explain simple and composite hypothesis.

 $(5 \ge 2 = 10 \text{ marks})$

Part C (Short Essay Type Questions)

Answer any five questions. Each question carries 4 marks,

16. Explain the method of constructing a Lorenz curve.

17. Prove that standard deviation is independent of change of origin, but not of scale.

18. Let B c_A, prove that (i) P (A nB^c) = P (A) P (B) ; and (ii) P (B) P (A).

- 19. The p.d.f, of a random variable X is given by f(x) = kx (1-x); 0 < x 1:
 - (i) Find the value of k.
 - (ii) Obtain the distribution function of X.
- 20. Define the moment generating function of a random variable. Explain how you will obtain moments from a moment generating function.
- 21. Obtain the sampling distribution of mean of the samples from a Normal population.
- 22. Obtain the interval estimate of variance of a Normal population.
- 23. Obtain the maximum likelihood estimator of parameter of a Poisson population.

77

(5 x 4 = 20 marks)

Part **D** (Essay Questions)

Answer any five questions. Each question carries 8 marks.

24. Obtain the co-efficient variation for following data :

Production

Length of life (in hours) : 500-700 700900 900-1100 1100-1300							1300-1500	
No.of bulbs	5	11	26		10	8		
25. Fit a straight line to the follow	ring data :							
Year	1992	1994	1996	1998	2000	2002	2004	

88

94

94

96

98

81

26. Find the co-efficient of correlation between X and Y from the following data :

Х	15.5	16.5	17.5	18.5	19.5	20.5
	75	60	50	50	45	40

27. The two lines of regression are given by 8x - 10y 4 - 66 = 0 and 40x - 18y = 214:

- (a) Identify the regression lines.
- (b) Find the mean values of X and Y.
- (c) Find the correlation co-efficient between X and Y.
- (d) Find the standard deviation of Y, if the standard deviation of X is 3.
- 28. From a group of 3 Indians, 4 Pakistanis and 5 Americans, a sub-committee of four peoples is selected by lots. Find the probabilities that the sub-committee will consist of :
 - (a) 2 Indians and 2 Pakistanis.
 - (b) 1 Indian, 1 Pakistani and 2 Americans.
 - (c) At least one Indian.

29. A random variable X has the p.m.f. given by :

Х	-3	-1	0	1	2	3
f (x)	k^2	$2k^2 + k$	$2k^2 + 3k$	$4k^2 + 5k$	$3k^2 + 3k$	$2k^2 + k$

- (a) Find the value of k.
- (b) Obtain the distribution function of X
- (c) Find P (X > 1) and P (X 5 2).

30. From a Normal population N 6^{2} , obtain :

- (a) The MLE of p when 6^2 is known.
- (b) The MLE of 0^2 when μ is known.

31. Let x₁, x₂,..., x₉ is a random sample of size nine taken from a Normal population N 25). To test H_o: µ = 5 against H₁: p, = 6, the critical region suggested is 7 where x is the sample mean. Find the significant level and power of the test.

 $(5 \ge 8 = 40 \text{ marks})$