\qquad
\qquad

FOURTH SEMESTER B.B.A. DEGREE EXAMINATION, APRIL 2016

(CUCBCSS-UG)

Complementary Course
BBA IVC 04-MANAGEMENT SCIENCE

Time : Three Hours
Maximum : 80 Marks

> Part I
> Answer all ten questions.
> Each question carries 1 mark.

1. Operations research can be applied to
(a) Military.
(b) Business.
(c) Administration.
(d) All of the above.
2. An optimization model :
(a) Mathematically provides best decision.
(b) Provides decision with limited context.
(c) Helps in evaluating various alternatives constantly.
(d) All of the above.
3. A constraint in an LP model restricts :
(a) Value of objective function.
(b) Value of decision variable.
(c) Use of available resource.
(d) All of the above.
4. All negative constraints must be written as:
(a) Equality.
(b) Non-equality.
(c) Greater than or equal to.
(d) Less than or equal to.
5. Any activity which does not consume either any resource or time is a :
(a) Predecessor.
(b) Successor.
(c) Dummy.
(d) End.
6. The solution to a transportation problem with m-rows and n-columns is feasible if numbers of positive allocations are :
(a) $m+n$.
(b) $m+n-1$.
(c) mxn .
(d) $m+n+1$
7. Game theory is the study of :
(a) Selecting optimal strategies.
(b) Resolving conflict between players.
(c) Both (a) and (b).
(d) None of the above.
8. The sequence of activities which determines the total project time is :
(a) Network.
(b) Critical Path.
(c) Critical activities.
(d) None of the above.
9. Which of the following might be viewed as an optimistic decision criterion?
(a) Hurwitz criterion.
(b) Maximin.
(c) Maximax.
(d) Minimax.
10. Game theory models are classified by :
(a) Number of players.
(b) Sum of all pay-off.
(c) Number of strategies.
(d) All of the above.
($10 \times 1=10$ marks)

Part II (Short Answer Questions)

Answer any eight questions.
11. What do you mean by physical model ?
12. Define linear programming.
13. Define risk.
14. What do you mean by value of the game ?
15. What do you mean by pure strategy?
16. What is expected opportunity loss?
17. What do you mean by loop in transportation problems?
18. What is float?
19. What is critical path?
20. What is degeneracy in transportation problems?

$$
(8 \times 2=16 \text { marks })
$$

Part III (Short Essays)

Answer any six questions.
21. List out the various phases in operation research approach to problem solving.
22. What do you mean by a model ? What are its unique characteristics ?
23. Discuss the significance of linear programming problems.
24. What do you mean by decision-making ? Explain various decision-making situations.
25. What do you mean by network analysis ? State its objectives.
26. From the following opportunity loss table determine the best decision strategy

States of Nature	Action I	Action II	Action III
Si	2.0	2.5	3.0
S 2	2.0	2.4	2.2
S 3	2.6	2.8	3.0

States of natures $\mathrm{Si}, \mathrm{S} 2$ and S 3 assume probabilities $0.4,0.4$ and 0.2 respectively.
27. The XYZ Company during the festival season combines two factors A and B to form a gift pack which must weigh 5 kg . At least 2 kg of A and not more than 4 kg of B should be used. The net profit contribution to the company is Rs. 5 per kg for A and Rs. 6 per kg for B . Formulate LP model to find the optimal factor mix.
28. From the following pay-off matrix of two firms X and Y determine the optimal strategy for both the firms and value of the game under maximin and minmax principle

Firm Y

Part IV (Long Essays)

Answer any two questions.
29. Solve the following linear programming problem. graphically :

$$
\begin{array}{r}
\text { Maximize } Z=2 \mathrm{x}_{1}+\mathrm{x}_{2} \\
\text { subject to } \mathrm{x}_{1}+2 \mathrm{x}_{2} \mathbf{1 O} \\
+\mathrm{x} 2<6 \\
x_{1}-\mathrm{x}_{2}<2 \\
x_{1}-2 \mathrm{x}_{2}<1 \\
\mathrm{x} 1, \mathrm{x} 2 \mathrm{O} .
\end{array}
$$

30. Find the optimum solution to the following transportation problem in which the cells contain the transportation cost in rupees :

	W1	W2	W3	W4	W5	Available
F1	7	6	4	5	9	40
F2	8	5	6	7	8	30
F3	6	8	9	6	5	20
F4	5	7	7	8	6	10
Required	30	30	15	20	5	100

31. From the following data construct a network diagram and determine critical path :

Activity $\quad . .1$-2 1-3 2-4 3-4 3-54-9 5-6 5-7 6-8 7-8 8-10 9-10

