D	70188	(Pages : 2)	Nam

_ , _ , _ ,		
Reg	No	

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS-UG)

B.C.A.

BCA 5B 08—COMPUTER ORGANISATION AND ARCHITECTURE

(2017 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Which digital system translates coded characters into a more intelligble form?
- 2. In a BCD to seven segment converter, what is the use of code converter?
- 3. Which shift register that will accept a parallel input and can shift data left or right called?
- 4. In this type of counter, the complement of the output of the last stage of the shift register is fed back to the D input of the first state.
- 5. How register reference instructions are recognized by the control unit?
- 6. How do we implement the control logic in hardwired logic?
- 7. ——— contains the status information that characterizes the state of the CPU.
- 8. Write the reverse polish notation for the given ainfils arithmetic expression A * B + C * D + E * F.
- 9. How many characters can be encoded using ASCII?
- 10. ———— is the method transfers a large block of data between a high speed I/O device such as a disk and memory directly without CPU.

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer all questions.

Each question carries 2 marks.

- 11. Draw the logic diagram of a 2-line-to-4-line decoder using NOR gates.
- 12. Draw the logic diagram of a four-bit binary ripple countdown counter, using flip-flops that trigger on the negative edge of the clock.
- 13. What do you meant by instruction cycle? What are the four phases of instruction cycle?
- 14. Explain about the input output configuration with neat figure.
- 15. What do you mean by register stack?
- 16. What do you mean by Data Transfer Instructions?

Turn over

2

- 17. Define hit/miss ratio.
- 18. What do you mean by I/O controllers?

 $(8 \times 2 = 16 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 4 marks.

- 19. Decsribe the operation of a multiplexer with necessary diagrams.
- 20. Construct a 16×1 multiplexer with two 8×1 and one 2×1 multiplexers. Use block diagrams.
- 21. Explain the working of decade counter.
- 22. Explain about the control unit with figure.
- 23. Write a note on register reference instructions.
- 24. Explain about the priority interrupt.
- 25. What do you mean by data manipulation instructions?
- 26. Write a note on peripheral devices.
- 27. What do you mean by memory mapping?

 $(6 \times 4 = 24 \text{ marks})$

Part D

Answer any three questions. Each question carries 10 marks.

- 28. (a) Explain the working of decoders with diagram.
 - (b) Draw the logic diagram of 2-to-4-line decoder using (i) NOR gates only; (ii) NAND gates only. Include the enable input.
- 29. Write a note on Johnson counter.
- 30. Discuss about the design of accumulator logic.
- 31. Discuss about the processor organization.
- 32. Discuss about the memory organization.

 $(3 \times 10 = 30 \text{ marks})$