FIRST SEMESTER B.A./B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS—UG)

Mathematics

MAT 1C 01-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all twelve questions.

- 1. Find $\lim_{x\to 2} \frac{-x}{(x-3)^2}$.
- 2. Differentiate $\cos(x^2 + 2)$ with respect to x.
- 3. Suppose $\lim_{x \to c} f(x) = 5$ and $\lim_{x \to c} g(x) = -2$. Find $\lim_{x \to c} \frac{f(x)}{g(x)}$.
- 4. Find second derivative of $y = \sin x + \cos x$.
- 5. Define a decreasing function.
- 6. Evaluate $\sum_{k=1}^{10} k^2$.
- 7. Find $\lim_{x \to \infty} \frac{\pi \sqrt{3}}{x^2}$.
- -9. Find dy if $y = x^5 + 37x$.
- 10. Define critical point of a function.

Turn over

- 11. Define norm of a partition.
- 12. Suppose that $\int_{1}^{4} f(x) dx = -2$. Evaluate $\int_{4}^{1} f(x) dx$.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any nine questions.

- 13. Evaluate $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x}$.
- 14. Find absolute extremes of $h(x) = x^{2/3}$ on [-2, 3].
- 15. Find $\frac{d}{dx} \int_0^{\sqrt{x}} \cos t dt$.
- 16. Given $1-x^2/4 \le u(x) \le 1+x^2/2$, for all $x \ne 0$. Find $\lim_{x\to 0} u(x)$.
- 17. If $\lim_{x \to -2} \frac{f(x)}{x^2} = 1$, find $\lim_{x \to -2} \frac{f(x)}{x^3}$.
- 18. Show that $\lim_{x\to 1} 5x 3 = 2$.
- 19. Evaluate $\lim_{x \to \infty} \frac{5x^2 + 8x 3}{3x^2 + 2}$.
- 20. Find the derivative of $y = \frac{x^2 + 1}{x^2 1}$.
- 21. Find the linearization of $x^3 x$ at x = 1.

- 22. Express the limit $\lim_{\|P\|} \to 0$ $\sum_{k=1}^{n} \left(c_k^2 3c_k\right) \Delta x_k$ as definite integral where P is the partition of [-7,5].
- 23. Give an example of a function with no Riemann integral. Explain.
- 24. Show that the value of $\int_0^1 \sqrt{1+\cos x} \ dx$ cannot possibly be 2.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions.

- 25. Find $\lim_{h\to 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$.
- 26. Find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.
- 27. Find the interval on which $g(x) = -x^3 + 12x + 5$, $-3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values and what are these values?
- 28. Show that the functions with zero derivatives are constant.
- 29. Show that $f(x) = \frac{x^2 + x 6}{x^2 4}$ has acontinuous extension to x = 2, and find that extension.
- 30. For what values of a is $f(x) = \begin{cases} x, & x < -2; \\ ax^2, & x \ge -2 \end{cases}$ continuous at every x?
- 31. Find the slope of the parabola $y = x^2$ at the point P(2,4). Write an equation for the tangent to the parabola at this point.
- 32. Does the curve $y = x^4 2x^2 + 2$ have any horizontal tangents? If so where?
- 33. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$. about the x-axis.

 $(6 \times 5 = 30 \text{ marks})$

Turn over

Part D (Essay Type)

Answer any two questions.

34. Find the volume of the solid generated by revolving the regions bounded by the curve $x = \sqrt{5}y^2, x = 0, y = -1$ about x-axis.

35. Let
$$f(x) = \begin{cases} 3-x, & x < 2; \\ \frac{x}{2} + 1, & x > 2. \end{cases}$$

- a) Find $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$.
- b) Does $\lim_{x\to 2} f(x)$ exist? If so, what is it? If not, why not?
- c) Find $\lim_{x \to 4^+} f(x)$ and $\lim_{x \to 4^-} f(x)$.
- d) Does $\lim_{x\to 4} f(x)$ exist? If so, what is it? If not, why not?
- 36. Find the center of mass of a thin plate of constant density δ covering the region bounded above by parabola $y = 4 x^2$ and below by x-axis.

 $(2 \times 10 = 20 \text{ marks})$