\mathbf{D}	71	C	5	=
1)	11	n:	;)	•

(Pages: 4)

Name.....

Reg. No.....

THIRD SEMESTER B.A./B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS-UG)

Mathematics

MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all twelve questions. Each question carries 1 mark.

1. Find
$$\lim_{x \to 3} \frac{x+3}{x^2-9}$$
.

2. Find
$$\frac{d}{dx} \ln (x^2 + 3)$$
.

3. Find
$$\lim_{x\to 0} \frac{3x-\sin x}{x}$$
.

- 4. Give an example of a sequence which has no upper bound.
- 5. Find a formula for the $n^{\rm th}$ term of the sequence 1, -4, 9, -16, 25,...

6. Find
$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$$

7. Write a parametrization of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

8.
$$\lim_{n\to\infty} \frac{\ln n}{n} = \dots$$

- 9. If $\sum_{n=1}^{\infty} a_n$ converges, then a_n converges to ...
- 10. Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$. If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, and $\sum b_n$ converges, then $\sum a_n \dots$
- 11. A series $\sum a_n$ is said to be absolutely convergent if
- 12. $\frac{d}{dx}a^x = \dots$

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Find $\lim_{x \to 0^+} x \cot x$.
- 14. Evaluate $\int_0^1 \sinh^2 x dx$.
- 15. Find $\lim_{n\to\infty} \frac{\cos n}{n}$.
- 16. Let $a_n = \begin{cases} \frac{n}{2n}, & n \text{ odd }; \\ \frac{1}{2^n}, & n \text{ even.} \end{cases}$ Does $\sum a_n$ converge?
- 17. For what values of x do the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ converges?
- 18. Find the center and radius of the conic section $x^2 + 4x + y^2 = 12$.

- 19. Locate the vertices of an ellipse of eccentricity 0.8 whose foci lie at the points $(0, \pm 7)$.
- 20. Determine the conic section from the equation $3x^2 6xy + 3y^2 + 2x 7 = 0$.
- 21. Graph the sets of points whose polar co-ordinates satisfy the condition $1 \le r \le 2$ and $0 \le \theta \le \pi/2$.
- 22. Find the polar equation for the circle $x^2 + (y-3)^2 = 9$.
- 23. Find the directrix of the parabola $r = \frac{5}{2 + 2\cos\theta}$.
- 24. Determine if the sequence $a_n = \frac{3n+1}{n+1}$ is non-decreasing and if it is bounded from above.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions. Each question carries 5 marks.

- 25. Show that $\lim_{x \to 0^+} (1+x)^{1/x} = e$.
- 26. Does the sequence whose n^{th} term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ converge? If so, find $\lim_{n \to \infty} a_n$.
- 27. Find a formula for the n^{th} partial sum of the series $2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^{n-1}}$ and ude it to find the serie's sum if the series converges.
- 28. Find the surface area generated by revolving the curves $x = t + \sqrt{2}$, $y = \frac{t^2}{2} + \sqrt{2t}$, $-\sqrt{2} \le t \le \sqrt{2}$ about y-axis.
- 29. Show that the point (2, $3\pi/4$) lies on the curve $r = 2 \sin 2\theta$.
- 30. Find the Maclaurin series for the function $f(x) = xe^x$.

Turn over

- 31. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges or diverges.
- 32. Does $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ converges?
- 33. Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty} (-1)^n (4x+1)^n.$

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any **two** questions. Each question carries 10 marks.

- 34. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
- 35. Find the Taylor series generated by f(x) = 1/x at a = 2. Where if anywhere, does the series converges to 1/x?
- 36. Find the length of the curve $x = t^2 / 2$, $y = \frac{(2t+1)^{3/2}}{3}$, $1 \le t \le 4$.

 $(2 \times 10 = 20 \text{ marks})$