T		A	O	റ	Λ
IJ	1	U	ð	${f 2}$	U

(Pages: 4)

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS—UG)

Mathematics

MAT 5B 05-VECTOR CALCULUS

Time: Three Hours

Maximum: 120 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Evaluate $\lim_{(x, y) \to (1, 3)} \frac{x+1}{4-y}$.
- 2. Find the domain and range of $z = \sqrt{1 x^2 y^2}$.
- 3. Find the gradient of $\phi(x, y, z) = x^2 + y^2 + z^2$.
- 4. Compute the divergence of $\vec{f} = xy \vec{i} + yz \vec{j} + xz \vec{k}$.
- 5. Define directional derivative of a function.
- 6. What do you mean by a conservative vector field?
- 7. Give a very brief discription of linearization of a function of two variables.
- 8. Find du if $u = e^{x^2 + y^2 + z^2}$.
- 9. Fill in the blanks : If \vec{f} and \vec{g} are differentiable vector point functions, then

$$\nabla \cdot (\vec{f} \times \vec{g}) = \dots$$

10. State the tangential form of Green's theorem in the plane.

Turn over

- 11. Fill in the blanks: If \vec{a} is a constant vector and $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, then $\nabla \times (\vec{a} \times \vec{r}) =$
- 12. State Stokes theorem mentioning all the assumptions involved in it explicitly.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any ten questions. Each question carries 4 marks.

- 13. Find the vector normal to the surface $\phi(x, y, z) = x^2y 2y^2z^3$ at (1, -1, 2).
- 14. Evaluate $\lim_{(x, y) \to (0, 0)} \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$.
- 15. If $x^2 + y^2 + z^2 + ye^x z + z \cos y = 0$ then, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the origin.
- 16. Prove that $\nabla (r^n) = nr^{n-2} \vec{r}$.
- 17. Find the total derivative of u = xy + z with respect to t if $x = \cos t$, $y = \sin t$ and z = t.
- 18. Compute the average value of the function $f(x, y) = x \cos(xy)$ over the rectangular region $0 \le x \le \pi$, $0 \le y \le 1$.
- 19. Linearize the function $f(x, y) = \sin(\pi x y^2)$ at (1, 1).
- 20. Find the directional derivative of $f(x, y) = xc^y + \cos(xy)$ at (2, 0) in the direction of $3\ddot{i} 4\ddot{j}$.
- 21. Find the velocity and acceleration vectors of $r(t) = (3\cos t)i + (3\sin t)j + t^2k$.
- 22. Find the flow of $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$ along the portion of the circular helix

$$x = \cos t, y = \sin t, z = t; 0 \le t \pi/2.$$

- 23. Test whether the vector $\vec{f} = (e^x \cos y + yz)\vec{i} + (xz e^x \sin y)\vec{j} + (xy + z)\vec{k}$ is conservative or not.
- 24. If the sides and angles in a traingle vary in such a way that its circum-radius R remains a constant, then show that $\frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 0$.
- 25. Verify whether the differential ydx + xdy + 4dz is exact or not.
- 26. Show that $\vec{f} \times \vec{g}$ is solenoidal if \vec{f} and \vec{g} are irrotational.

 $(10 \times 4 = 40 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 7 marks.

- 27. Evaluate $\int_0^{\pi} \int_y^{\pi} \frac{\sin x}{x} dy dx$.
- 28. If \vec{f} is a differentiable vector function of t, differentiable at least 3 times, prove that $\frac{d}{dt} \left[\vec{f}, \vec{f}', \vec{f}'' \right] = \left[\vec{f}', \vec{f}'', \vec{f}''' \right].$
- 29. Find the work done by the force field $\vec{f} = z \vec{i} + x \vec{j} + y \vec{k}$ along the boundary of the curve $C: \vec{r} = \cos t \vec{i} + \sin t \vec{j} + 3t \vec{k}$ where $0 \le t \le 2\pi$.
- 30. Test the continuity of f(x, y) defined by

$$f(x, y) = \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0) \text{ and } f(x, y) = 0, (x, y) = (0, 0).$$

- 31. Find the equation to the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z^2 9 = 0$ at the point (1, 2, 4).
- 32. Evaluate the area enclosed by the Lemniscate $r^2 = 4 \cos 2\theta$ using double integrals.

Turn over

- 33. Find the Local extreme values of $f(x, y) = 3y^2 2y^3 3x^2 + 6xy$.
- 34. Evaluate the volume of the region bounded by $x^2 + y^2 = 4$, y + z = 3, z = 0.
- 35. Show that $\vec{f} = y \sin z \vec{i} + x \sin z \vec{j} + xy \cos z \vec{k}$ is conservative and find its scalar potential.

 $(6 \times 7 = 42 \text{ marks})$

Part D

Answer any two questions. Each question carries 13 marks.

- 36. (a) State Gauss divergence theorem and use it to evaluate the outward flux of $\vec{f} = xy \ \vec{i} + yz \vec{j} + xz \ \vec{k}$ through the surface of the cube cut from the first octant by the planes x = y = z = 1.
 - (b) If S is a closed surface enclosing a volume V, then prove that $\iint_S \vec{r} \cdot ndS = 3V$.
- 37. (a) Evaluate the surface integral $\int_{S} \vec{f} \cdot ndS$ where $\vec{f} = y \vec{i} + x \vec{j} + z^2 \vec{k}$ over the cylindrical surface S given by $x^2 + y^2 = a^2$, z = 0, z = h.
 - (b) Find angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -2, 2).
- 38. (a) Find the value of $\int_{(1,0,0)}^{(0,1,0)} \sin y \cos x dx + \cos y \sin x dy + dz$.
 - (b) In what direction from the point (2, 1, -1) the directional derivative of $\phi(x, y, z) = x^2 yz^3$ is maximum and find the magnitude of this maximum.

 $(2 \times 13 = 26 \text{ marks})$