	0	n	റ	C	O
\mathbf{C}	O	v	4	v	บ

(Pages: 4)

Name	******************

Reg. No.....

SIXTH SEMESTER B.A./B.Sc. DEGREE EXAMINATION, MARCH 2020

(CUCBCSS-UG)

Mathematics

MAT 6B 09—REAL ANALYSIS

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all questions. Each carries 1 mark.

- 1. Define absolute maximum of a real valued function $f: A \to R$, $A \subseteq R$.
- 2. Give an example of a continuous function. Why unbounded eventhough its domain is a bounded set in R.
- 3. State the location of Roots theorem.
- 4. Define uniform continuity of a function.
- 5. Find ||p|| if $p = \{0, 0.2, 0.5, 0.9, 1.5, 2\}$ is a partition of [0,2].
- 6. Let F, G be differentiable on [a,b] and F'=f and G'=g both belongs to R[a,b]. Then $\int_{a}^{b} fG =$ ______.
- 7. Give an example of the improper integral of the 3rd kind.
- 8. The radius of convergence of the power series $\sum \frac{x^n}{n}$ is ______.
- 9. State the Weierstrass M-test for the uniform convergence of a series of functions.
- 10. When do we say a series of functions is absolutely convergent?

11.
$$\lim_{n\to\infty}\left[\frac{\cos(nx+n)}{n}\right] = ----$$

12. State the relation between Beta function and Gamma function.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Section B

Answer any **ten** questions. Each carries 4 marks.

- 13. (a) What do you mean by Lipschitz condition?
 - (b) What is its geometrical interpretation?
- 14. Let $f_n(x) = x^n(1-x)$, $x \in A = [0,1]$. Prove that $f_n(x)$ converges to '0' uniformly on A.
- 15. Discuss the convergence of $\int_{1}^{\infty} \frac{\ln x \, dx}{x+u}$, where u > 0.
- 16. Evaluate $\int_{1}^{4} \frac{\sin \sqrt{t}}{\sqrt{t}} dt.$
- 17. State the boundedness theorem on Riemann integral. Justify the converse by an example.
- 18. State continuous extension theorem. Use it to show that $f(x) = x \sin\left(\frac{1}{x}\right)$ is uniformly continuous on (0,b], b > 0.
- 19. Show by an example that every uniformly continuous function need not be Lipschitz function.
- 20. Determine the uniform convergence of $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ for $|x| \le a$.
- 21. Distinguish between pointwise and uniform convergence of a sequence. Write the relation between them. Also write the necessary and sufficient condition for sequence (f_n) fail to converge uniformly on $A_0 \subset \mathbb{R}$ to f.
- 22. If $f \in \mathbb{R}[a,b]$, then P.T. $|f| \in \mathbb{R}_{[a,b]}$.
- 23. State the limit comparison test for the convergence of improper integrals. Test the convergence of $\int_{1}^{\infty} \frac{dx}{1+x^2}$.

- 24. Prove that $\frac{1}{2} = \sqrt{\pi}$.
- 25. Prove that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1), m,n > 0.$
- 26. Prove that $\beta(m,n) = 2 \int_{0}^{\pi/2} (\sin x)^{2m-1} (\cos x)^{2n-1} dx$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any six questions. Each carries 7 marks.

- 27. P.T. the image of a closed and bounded interval under a continuous mapping is a closed and bounded interval.
- 28. State and prove Bolzano's intermediate value theorem.
- 29. If $f:[a,b] \to \mathbb{R}$ is continuous [a,b], then P.T. $f \in \mathbb{R}_{[a,b]}$.
- 30. State and prove uniform continuity theorem.
- 31. P.T. a sequence of bounded functions (f_n) on $A \subseteq \mathbb{R}$ converges uniformly to f on A iff $\|f_n f\|_A \to 0$.
- 32. Discuss the convergence of $(f_n(x))$, where $f_n(x) = x^n$, $x \in \mathbb{R}$, $n \in \mathbb{N}$.
- 33. Prove that the uniform limit of a sequence of continuous function on $A \subseteq R$ is continuous on A.
- 34. Prove that $\frac{\beta(m, n+1)}{n} = \frac{\beta(m+1, n)}{m} = \frac{\beta(m, n)}{m+n}.$
- 35. Evaluate $\int_{0}^{1} (x \ln x)^{3} dx.$

 $(6 \times 7 = 42 \text{ marks})$

Turn over

Section D

Answer any **two** questions. Each carries 13 marks.

- 36. (a) State and prove Maximum-Minimum theorem.
 - (b) Show by an example that none of the conditions of the Maximum-Minimum theorem can be relaxed.
- 37. (a) If (x_n) is a Cauchy sequence on $A \subseteq R$, then P.T. $(f(x_n))$ is a Cauchy sequence in R, when $f: A \to R$ is uniformly continuous on $A \subseteq R$.
 - (b) Show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).
- 38. (a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta.$

(b) If
$$I = \int_{0}^{\infty} \frac{x^{n-1}}{1+x} dx = \frac{\pi}{\sin n\pi}$$
, S.T. $\ln |1-n| = \frac{\pi}{\sin n\pi}$ for $0 < n < 1$.

 $(2 \times 13 = 26 \text{ marks})$