D7	2	9	3	
----	---	---	---	--

(Pages: 2)

Nam	(Cassos ensy eessas aassasaasoo eessasaan eessasa
Reg.	No.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIRST SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION DECEMBER 2019

(CBCSS)

Chemistry

CHE 1C 04-THERMODYNAMICS, KINETICS AND CATALYSIS

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer eight questions.

Each question carries a weightage of 1.

- 1. What is residual entropy? Write on example.
- 2. What do you mean by regular solution?
- 3. State and explain Onsagar reciprocal relation.
- 4. What is active transport?
- 5. State and explain steady-state approximation.
- 6. Distinguish between diffusion controlled and activation controlled reactions.
- 7. Define isosteric heat of adsorption.
- 8. What is Michaeli's Menton constant?
- 9. Write one example for a polymer supported catalyst. Explain.
- 10. Distinguish between collision cross section and reaction cross section.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer six questions.

Each question carries a weightage of 2.

- 11. Use third law of thermodynamics to show that absolute zero of temperature is unattainable.
- 12. Show that solvent obeys Raults law in the limit of solute obeying Henry's law.
- 13. Define phenomenological coefficient. Show that direct coefficient always dominate indirect coefficients.

Turn over

14. Decomposition of acetyls dehyde obeys the following mechanism. Derive the rate law:

$$CH_3CHO \xrightarrow{k_1} CH_3 + CHO$$
 $CH_3CHO + CH_3 \xrightarrow{k_2} CH_4 + CH_3CO$
 $CH_3CO \xrightarrow{k_3} CH_3 + CO$
 $2CH_3 \xrightarrow{k_4} C_2H_6$

- 15. Briefly illustrate a crossed molecular beam experiment.
- 16. With the help of potential energy surfaces explain reaction coordinate.
- 17. Discuss principle and applications of mercury perosimetry.
- 18. Briefly explain Lotka-Volterra model of oscillatory chemical reactions.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer two questions Each question carries a weightage of 5.

- 19. Apply concept of irreversible thermodynamics to rationalise (a) thermal osmosis; (b) thermal diffusion.
- 20. Discuss Somenoff Hinshelwood theory of branching chain reactions.
- 21. Briefly discuss Activated Complex Theory of reaction rates.
- 22. Write a brief account of the methods for determination of surface area of solids.

 $(2 \times 5 = 10 \text{ weightage})$