D 72746	(Pages : 3)	Name
		Reg. No

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2019

(CUCSS)

Chemistry

CH 1C 01—QUANTUM CHEMISTRY AND GROUP THEORY

(2015 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Calculate the uncertainty in position of an electron moving with a velocity of 2×10^6 ms⁻¹, accurate upto 0.001 %.
- 2. Define Orthonormal Functions.
- 3. What do you mean by zero-point energy? Provide an example for zero-point energy.
- 4. Sketch the rough graphs of ψ and of ψ^2 for the n=4 and n=5 particle-in-a-box states.
- 5. Discuss the physical origin of quantisation of energy for a particle confined to move around a ring.
- 6. What are Hermite polynomials in quantum mechanics?
- 7. Define Bohr radius.
- 8. What are nodes? How many nodes are there in the plot of radial probability function for a 3p orbital?
- 9. How do you find the classes of a group?
- 10. Explain block diagonalisation.
- 11. Write a note on Mulliken symbols of character table.
- 12. Write the transformation matrix obtained from this operation

$$C_2 z \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
.

 $(12 \times 1 = 12 \text{ weightage})$

Turn over

Part B

Answer any **eight** questions. Each question carries a weightage of 2.

- 13. Elaborate the characters of Hermitian operator by choosing total energy operator in quantum mechanics.
- 14. What do you mean by a commutator operator? Commuting operators have common eigen function. Verify.
- 15. Discuss the physical origin of quantum mechanical tunnelling. Identify two chemical systems where tunnelling might play a role.
- 16. Set up Schrödinger wave equation for a particle in a three dimensional rectangular box.
- 17. The j=0 to j=1 transition for carbon monoxide ($^{12}C^{16}O$), occurs at 1.153×10^5 MHz. Calculate the value of bond length in carbon monoxide.
- 18. Explain the exponential decay of wave functions of hydrogen atom wrt. radial distance.
- 19. Consider the eigen value problem $d^2 \varnothing / d\phi^2 = -m^2 \varnothing$

Where m is a real number. The two eigen functions of

 $\hat{A} = d^2/d\phi^2$ are $\varnothing_m(\phi) = e^{im\varnothing \text{ and }} \varnothing_{-m}(\phi) = e^{-im\varnothing}$. We can easily show that each of these eigen functions has the eigen value $-m^2$. Show that any linear combination of $\varnothing_m(\phi)$ and $\varnothing_{-m}(\phi)$ is also an eigen function of $\hat{A} = d^2/d\phi^2$.

- 20. Show explicitly that the first few Hermite polynomials satisfy the recursion formula.
- 21. Derive the matrix for C_n rotation and S_n rotations considering z-axis as the axis of symmetry. Find the characters of the matrices when n = 3.
- 22. Systematically determine the point group of staggered ferrocene. List the elements of the point group.
- 23. Decompose the following reducible representations and write it as a combination of irreducible representations

C_{2V}	E	C_2	σxz	σ 3/2
Γ (R 1)	12	0	4	0
Γ (R 2)	15	-1	3	3

24. Explain the relation between group theory and quantum mechanics in detail.

Part C

Answer any **two** questions. Each question carries a weightage of 4.

25. Prove the following relations:

(a)
$$\left[\hat{\mathbf{L}}_{x}\hat{\mathbf{L}}_{y}\right] - i\hbar\hat{\mathbf{L}}_{z}$$
.

(b)
$$\left[\hat{\mathbf{L}}_{y}\hat{\mathbf{L}}_{z}\right] - i\hbar\hat{\mathbf{L}}_{x}$$
.

(c)
$$\left[\hat{\mathbf{L}}_z\hat{\mathbf{L}}_x\right] - i\hbar\hat{\mathbf{L}}_y$$
.

- 26. Solve the Schrödinger equation for a simple harmonic oscillator to derive expressions for the state functions and energies. Compare the quantum mechanical harmonic oscillator with the classical oscillator.
- 27. State the Great Orthogonality theorem. Based on the theorem derive the character table for C_{2h} point group. Suggest a molecule belonging to this point group.
- 28. Explain the improper axis of rotation with suitable examples. Explain the various operations generated by all known S_n axis of rotation where n = odd number and even number.

 $(2 \times 4 = 8 \text{ weightage})$