D 70930	(Pages : 2)	Name
		Reg. No

THIRD SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION NOVEMBER 2019

Computer Science

CSS 3E 04 (C)—CRYPTOGRAPHY AND NETWORK SECURITY

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all questions.

- 1. What do you mean by "security service"?
- 2. Draw block diagram of a Model for Network security.
- 3. What are the two requirements for secure use of symmetric encryption.
- 4. What is a digital signature?
- 5. What is a Message Authentication Code?
- 6. List any three uses of public key cryptosystems.
- 7. What do you mean by "Public key infrastructure".
- 8. What is a nonce?
- 9. Give examples of application of IPsec.
- 10. What is the purpose of HTTPS.
- 11. What is a firewall?
- 12. List and briefly explain three classes of intruders.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any six questions.

- 13. Explain the structure of DES. What are the strengths of DES?
- 14. Discuss the challenges of Computer Security.
- 15. Write and explain HMAC algorithm.

Turn over

2

- 16. Give a digital signature scheme based on public key cryptography. Explain Digital signature Standard.
- 17. List the principal elements of an Identity Management System.
- 18. Explain how symmetric keys are distributed using symmetric encryption.
- 19. Write a note on SSH.
- 20. Explain Security Association database.
- 21. Discuss password selection strategies.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any three questions.

- 22. (i) Discuss the criteria used to validate that a sequence of numbers is random. Explain TRNG. PRNG and PRF.
 - (ii) Briefly explain the four stages used in an AES round.
- 23. Explain in detail cipher modes of operations.
- 24. (i) Give an overview of RSA algorithm.
 - (ii) Discuss Hash function requirements.
- 25. Give a detailed account of Kerberos.
- 26. Discuss SSL architecture and SSL record protocol.
- 27. Give a detailed account of characteristics of computer viruses and counter measures to virus attacks.

 $(3 \times 4 = 12 \text{ weightage})$