\mathbf{D}	7	2	8	2	1

(Pages: 3)

Nam	e
Reg.	No

FIRST SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION DECEMBER 2019

(CBCSS)

Economics

ECO 1C 04—QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS—I

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Type Questions)

Answer any four questions.

Each question carries a weightage of 2.

- 1. Distinguish between linear and quadratic functions with example.
- 2. Explain characteristic equation and characteristic roots.
- 3. Find the value of $\lim_{x\to 3} \frac{x^3-27}{x^2-9}$.
- 4. Find $\frac{dy}{dx}$ if $y = (x^3 + 1)(1 + x)$.
- 5. Give the conditions for maximum and minimum of a function. Find the maximum and minimum values of $y = x^3 6x^2 + 9x 5$.
- 6. Define a differential equation. What do you mean by order and degree of a differential equation? Solve $\frac{dy}{dx} = y + 1$.
- 7. Find the compound interest on Rs. 1,000 at 10 % per annum for $1\frac{1}{2}$ years when interest is accumulated every 6 months?

 $(4 \times 2 = 8 \text{ weightage})$

Turn over

Part B (Paragraph Type Questions)

Answer any **four** questions.

Each question carries a weightage of 3.

- Explain the properties of a determinant.
- 9. Solve the following equations 2x + 3y = 1 and 3x + y = 5 using Crammer's rule.
- 10. Find the rank of $A = \begin{bmatrix} 1 & 2 & 0 & 5 \\ 3 & 1 & 2 & 2 \\ 2 & 4 & 0 & 10 \end{bmatrix}$.
- 11. The total cost function of a firm is $C = \frac{1}{3}x^3 5x^2 + 28x + 10$ where C is the total cost and x is the output. A tax at the rate of Rs. 2 per unit of output is imposed and the producer adds it to his cost. If the market demand function is given p = 2530 5x where p is the price per unit of output. Find the profit maximizing output and price.
- 12. Explain the optimization techniques using Lagrangian multiplier method. Maximize the utility function $U = 4xy y^2$ maximizing subject to the constraint 2x + y 6 = 0.
- 13. If $z = \frac{x^2y^2}{x+y}$, show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$.
- 14. Find the difference between compound interest and simple interest for 2 years on a sum of Rs. 1,800 at 4 % per annum.

 $(4 \times 3 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any **two** questions.

Each question carries a weightage of 5.

15. Solve the following equations using matrix inversion method:

$$5x - 6y + 4z = 15$$

$$7x + 4y - 3z = 19$$

$$2x + y + 6z = 46$$
.

- 16. Define the derivative of a function. Explain the rules of differentiation. Discuss the applications of derivatives in Economics. Find the elasticity of demand for the demand function $x = \frac{27}{p^3}$.
- 17. Define integration. What do you mean by integration by parts? Show that the area bounded by the curve $y = \frac{4}{x^2} + x^3$, the x-axis and the ordinates x = 2 and x = 4 is 61 square units.
- 18. Define consumer's surplus and producer's surplus. The demand function for a commodity is $p = 80 4x x^2$. Find the consumer's surplus when (i) p = 20; and (ii) p = 35.

 $(2 \times 5 = 10 \text{ weightage})$