D	7	0	9	7	2

(Pages: 2)

Nam	1e
Reg.	No

THIRD SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION NOVEMBER 2019

(CUCSS)

Mathematics

MT 3C 14—FUNCTIONAL ANALYSIS

(2016 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

- 1. Define the metric space l^p , for $1 \le p \le \infty$ and the metric d_p on it. Is l^p separable for $1 \le p \le \infty$.
- 2. Give an element of $L^1(\mathbb{R})$ which does not belong to $L^2(\mathbb{R})$. Justify your answer.
- 3. Define the quotient norm on the quotient space X/Y, whereY is a closed subspace of a normed space X.
- 4. Let X be a convex subset of a normed space X. Show that the interior E^0 of E is convex.
- 5. Define a strictly convex normed space and give one example.
- 6. Show that BL(X, Y) is a normed space if X and Y are normed spaces.
- 7. State Hahn-Banach separation theorem.
- 8. Define the second dual of a normed space X and describe the canonical embedding of X into its double dual.
- 9. State the Taylor-Foguel Theorem.
- 10. Define a projection on a linear space. Show that for a projection P, R(P) = Z'(I P).
- 11. State open mapping theorem for Banach spaces.
- 12. Define a Hilbert space. Give an example of a Banach space which is not a Hilbert space.
- 13. State the Gram-Schmidt orthonormalization theorem.
- 14. State the Parseval formula in a Hilbert space.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Show that I^{∞} is complete.
- 16. Show that the metric space $L^{\infty}([a,b])$, a < b, is not separable.

Turn over

- 17. Show that the three norms $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_\infty$ on \mathbb{C}^n are equivalent.
- 18. Verify whether \mathbb{C}^n with norms $\| \|_1, \| \|_2$ and $\| \|_{\infty}$ is strictly convex or not for $n \geq 2$.
- 19. Prove that a Banach space cannot have a denumerable Hamel basis.
- 20. State and prove Resonance Theorem for a normed space.
- 21. Let X be a normed space in which every absolutely summable series of elements of X is summable. Prove that X is a Banach space.
- 22. Show that the inverse of a bijective continuous map may not be continuous.
- 23. State and prove the Schwarz inequality in an upper product space.
- 24. Let \mathbb{H} be a Hilbert space, let $\{u_n : n \in \mathbb{N}\}$ be a countable orthonormal set in \mathbb{H} and let $k_n \in \mathbb{K}$ such that $\sum_n |k_n|^2 < \infty$. Show that $\sum_n k_n u_n$ converges in \mathbb{H} .

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. State and prove Uniform Boundedness Principle for Banach spaces.
- 26. Let T be a set and let X be a subspace of B(T) with sup norm, $1 \in X$ and f be a linear functional on X. Prove the following:
 - (a) If f is continuous and ||f|| = 1, then f is positive.
 - (b) If Re $x \in X$ whenever $x \in X$ and if f is positive, then f is continuous and ||f|| = f(1).
- 27. Prove that the following three conditions are equivalent for a non-zero Hilbert space H over K:
 - (a) H has a countable orthonormal basis.
 - (b) If is linear isometric to \mathbb{K}^n for some $n \in \mathbb{N}$ or to l^2 .
 - (c) If is separable.
- 28. Let $\{u_{\alpha}\}$ be an orthonormal set in a linear product space X and $x \in X$. Let $E_x := \{u_{\alpha} : \langle x, u_{\alpha} \rangle \neq 0\}$. Prove the following:
 - (a) E_r is countable.
 - (b) If E_x is not finite, then $\langle x, u_n \rangle \to 0$ as $n \to \infty$

 $(2 \times 4 = 8 \text{ weightage})$