D 70973

(Pages: 3)

Nam	e	•••••••	********	•••••

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION NOVEMBER 2019

(CUCSS)

Mathematics

MT 3C 15—PDE AND INTEGRAL EQUATIONS

(2016 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Find the partial differential equation of all planes which are at a constant distance d form the origin.
- 2. Show that (x-z)(y-z)=1 is a singular integral of $z=px+qy-2\sqrt{pq}$.
- 3. Determine the region for which the two equations xp = yq and z(xp + yq) = 2xy are compatible.
- 4. Find the complete integral of $9(p^2z+q^2)=4$.
- 5. Determine the characteristic curve for solving the equation $z_x zz_y + z = 0$ for every y and x > 0 with the initial conditions $x_0 = 0$, $y_0 = s$, $z_0 = -2s$, $-\infty < s < \infty$.
- 6. What is the domain of dependence for a point?
- 7. State Cauchy's problem for first order equations.
- 8. Show that the solution of the Neumann problem is unique up to the addition of constant.
- 9. State the heat conduction problem in a plate with Neumann boundary.
- 10. Show that the function $y(x) = (1 + x^2)^{-\frac{3}{2}}$ is solution of the Volterra integral equation $y(x) = \frac{1}{1+x^2} \int_0^x \frac{\xi}{1+x^2} y(\xi) d\xi.$
- 11. Define Fredholm integral equation of second kind and give an example for it.
- 12. Determine the characteristic value λ for the equation $y(x) = \lambda \int_{0}^{2\pi} \sin(x+\xi) y(\xi) d\xi$.
- 13. Show that the Kernel $k(x,\xi) = (3x-2)\xi$ has no characteristic number associated with (0, 1).
- 14. Determine the resolvent kernel associated with $k(x,\xi) = \sin(x+\xi)$ in $(0,2\pi)$, in the form of a power series in λ .

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Find the general integral of the equation $(x^2 yz)p + (y^2 zx)q = z^2 xy$.
- 16. Using Charpit's method to find two complete integral of a first order partial differential equation $pq = px + \dot{q}y$.
- 17. Solve the equation $p^2x + q^2y = z$ by Jacobi's method.
- 18. Reduce the equation $u_{xx} = (1+y)^2 u_{yy}$ into Canonical form.
- 19. Show that $v(x,y; \alpha,\beta) = \frac{(x+y)[2xy+(\alpha-\beta)(x-y)+2\alpha\beta]}{(\alpha+\beta)^3}$ is the Riemann function for the second order partial differential equation.
- 20. Show that the surfaces $x^2 + y^2 + z^2 = c^{\frac{2}{3}}$ can form a family of equipotential surfaces, and find the general form of the corresponding potential function.
- 21. Solve:

$$u_{t} = u_{xx}, 0 < x < l, t > 0$$

$$u(0,t) = u(l,t) = 0$$

$$u(x,0) = \begin{cases} x, & 0 \le x \le \frac{l}{2} \\ l - x, & \frac{l}{2} \le x \le l. \end{cases}$$

- 22. Transform the boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$, y(0) = 0, y(l) = 0 to an integral equation.
- 23. Show that the characteristic function of the symmetric kernel corresponding to distinct characteristic numbers are orthogonal.
- 24. Solve by iterative method: $y(x) = \lambda \int_{0}^{1} e^{x-\xi} y(\xi) d\xi + f(x)$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries 4 weightage.

25. Show that the Paffian differential equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 - xy)dz = 0$ is integrable and find the corresponding integral.

D 70973

26. Determine the characteristic of the equation pq = z which passes through the parabola x = 0, $y^2 = z$.

3

- 27. Show that the solution of the Dirichlet problem for a circle of radius a is given by Poisson integral formula.
- 28. Show that any solution of the integral equation

$$y(x) = \lambda \int_{0}^{1} (1 - 3x\xi) y(\xi) d\xi + F(x)$$

can be expressed as the sum of F(x) and some linear combination of the characteristic functions. $(2 \times 4 = 8 \text{ weightage})$