D	7	2	7	8	5

(Pages: 3)

Name	> ?## *#######	3×244 0 40***	 *****

Reg. No.....

FIRST SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION DECEMBER 2019

(CUCSS)

Mathematics

MT 1C 04—NUMBER THEORY

(2016 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Which are the possible $n \in \mathbb{N}$ such that $\varphi(n) = \varphi(2n)$?
- 2. Give an example to show that a multiplicative function need not be completely multiplicative Verify it.
- 3. If f is multiplicative and not identically 0, show that f(1) = 1.
- 4. Prove that [x+n] = [x] + n for $n \ge 1$.
- 5. State the Euler summation formula; and give an asymptotic formula for log[x]!
- 6. Define the Chebyshev's functions $\psi(x)$ and $\vartheta(x)$.
- 7. State the prime number theorem. State an equivalent version of it in terms of the nth prime p_n .
- 8. If 0 < a < b, prove that there exists x_0 such that for $x \ge x_0$, there is at least one prime between ax and bx.
- 9. Define the little o notation. Express M(x) as the little o of a function.
- 10. Define the Legendre symbol (n|p). What is the value of $(m^2|p)$ for an integer $m \neq 0 \mod p$?
- 11. Find the value of (-1|27).
- 12. Prove that 3 is a quadratic non-residue for any p which is 5 mod 12.

Turn over

13. What is an affine map? Define such a map from A to Z and transform the message HELLO.

2

14. What is meant by a hash function? What is its significance in a cryptosystem?

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. Prove that $n = \sum_{d|n} \varphi(d) n \ge 1$.
- 16. Prove that for $n \ge 1$, $\log n = \sum_{d|n} \wedge (d)$.
- 17. Prove that a multiplicative function f is completely multiplicative if and only if $f^{-1}(n) = \psi(n)$ for $n \ge 1$.
- 18. State and prove the Selberg's identity
- 19. Prove that $\lim_{x\to\infty} \left(\frac{\psi(x)}{x} \frac{\vartheta(x)}{x} \right) = 0$.
- 20. If p_n is the *n*th prime, prove that if $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$ then $\lim_{x\to\infty} \frac{\pi(x)\log \pi x}{x} = 1$.
- 21. If $A(x) = \sum_{n \le x} \frac{\mu(n)}{n}$, prove that the relation A(x) = o(1) as $x \to \infty$ implies the prime number theorem.
- 22. Determine whether 219 is a quadratic residue or non-residue mod 383.
- 23. Find the inverse of $A = \begin{pmatrix} 2 & 3 \\ 7 & 8 \end{pmatrix} \in M_2(\mathbb{Z}/26\mathbb{Z})$. Use it to decipher the message unit "QV".
- 24. Explain the working of RSA cryptosystem using an example.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries a weightage of 4.

- 25. Prove that the set of all multiplicative functions f such that $f(1) \neq 0$ is subgroup of the group of all arithmetic functions.
- 26. State and prove Shaprio's theorem.

27. State Gauss lemma. If m is the number defined in Gauss' lemma, prove that

$$m \equiv \sum_{t=1}^{(p-1)/2} \left[\frac{tn}{p} \right] + (n-1) \frac{p^2 - 1}{8} \pmod{2}.$$

28. Suppose that we intercept the message "S GNLIKD?KOZQLLIOMKUL.VY" (including the blank after the S). Suppose that a linear enciphering transformation C = AP is being used with a 30-letter alphabet, in which A-Z have the usual numerical equivalents 0 - 25, blank = 26, . = 27, , = 28, ? = 29. It is also known that the last six letters of the plaintext are the signature KARLA followed by a period. Find the deciphering matrix A⁻¹ and the full plaintext message.

 $(2 \times 4 = 8 \text{ weightage})$