D	7	2	7	83

(Pages: 3)

Name	••••
------	------

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2019

(CUCSS)

Mathematics

MT1C02—LINEAR ALGEBRA

(2016 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions.

Each question carries weightage of 1.

- 1. Let V be a vector space over field K. Show that for any scalar $k \in K$ and $0 \in V$, k0 = 0.
- 2. Consider $V = \mathbb{R}^3$ as a vector space over \mathbb{R} . Show that W is not a subpsace of V, where $W = \{(a, b, c) : a \ge 0\}$.
- 3. For which value of k will the vector u = (1, -2, k) in \mathbb{R}^3 be a linear combination of the vectors v = (3, 0, -2) and w = (2, -1, -5)?
- 4. Show that the mapping $F: \mathbb{R}^2 \to \mathbb{R}$ defined by F(x, y) = xy is not linear.
- 5. Let ϕ be the linear functional on \mathbb{R}^2 defined by $\phi(2,1)=15$ and $\phi(1,-2)=-10$. Find $\phi(x,y)$.
- 6. Let $A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$. Find all eigenvalues and the corresponding eigenvectors of A viewed as a matrix over the real field \mathbb{R} .
- 7. Show that 0 is an eigenvalue of T if and only if T is singular.
- 8. Show that the vectors $e_1 = (1, 0, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, $e_3 = (0, 0, 1, ..., 0)$, ..., $e_3 = (0, 0, 0, ..., 1)$ is a basis for \mathbb{R}^n .
- 9. State the cayley-Hamilton Theorem.

Turn over

- 10. For the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & -3 \end{bmatrix}$, find a polynomial having the matrix A as a root.
- 11. Consider the three polynomials defined as follows:

$$p_1(t) = 7t^5 - 4t^2 + 3$$
, $p_2(t) = 2t^5 + 5t^2$, $p_3(t) = 8t^5 - 23t^2 + 6$. Is the set $\{p_1, p_2, p_3\}$ linearly independent?

- 12. Let \mathbb{R}^3 be equipped with the standard inner product. What is the orthogonal proejetion of the vector x = (1, 2, 3) onto the vector y = (3, 2, 1)?
- 13. Let V be the set of polynomials with the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)$. Let f(t) = t + 2. Find ||f||.
- 14. If u is orthogonal to v, then show that every scalar multiple of u is also orthogonal to v.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries weightage of 2.

- 15. Let V be the vector space of n-square matrices over a field \mathbb{R} . Let U and W be the subspaces of symmetric and antisymmetric matrices respectively. Show that $V = U \oplus W$.
- 16. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear mapping defined by

T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t). Find a basis and the dimension of the image U of T.

- 17. Let V be a vector space over the field F. Prove that the intersection of any collection of subspaces of V is a subspace of V.
- 18. Let W be an invariant subspace for T. Show that the characteristic polynomial for the restriction operator T_W on W divides the characteristic polynomial for T.
- 19. State and prove the Bessel's inequality.

- 20. Find a unit vector orthogonal to $v_1 = (1, 1, 2)$ and $v_2(0, 1, 3)$ in \mathbb{R}^3 .
- 21. For what value of k, $\langle u, v \rangle = x_1y_1 3x_1y_2 3x_2y_1 + kx_2y_2$, where $u = (x_1, x_2)$, $v = (y_1, y_2)$ is an inner product in \mathbb{R}^2 ?
- 22. State and Prove Cauchy-Schwarz inequality.
- 23. Verify that the following is an inner product in

$$\mathbb{R}^2: \langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$$
, where $u = (x_1, x_2), v = (y_1, y_2)$.

24. If $\lambda \in \mathbf{F}$ is a characteristic value of a linear operator T on a vector space V, then show that for any polynomial f(x) over \mathbf{F} , $f(\lambda)$ is a characteristic value of f(T).

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question carries weightage of 4.

- 25. If W_1 and W_2 are finite dimensional subspaces of a vector space V, then prove that $W_1 + W_2$ is finite dimensional and dim $W_1 + \dim W_2 = \dim (W_1 \cap W_2) + \dim (W_1 + W_2)$.
- 26. Prove that a linear operator $T: V \to V$ has a diagonal matrix representation if and only if its minimal polynomial m(t) is a product of distinct linear polynomials.
- 27. Let V and W be vector space over the field F, and let T be a linear transformation from V into W, The null space of T^t (transpose of T) is the annihilator of the range of T. If V and W are finite dimensional, then prove that (i) $rank(T^t) = rank(T)$, (ii) the range of T^t is the annihilator of the null space of T.
- 28. Apply Gram-Schmidt process to the vectors $w_1 = (1, 0, 1, 0) w_2 = (1, 1, 1, 1)$ and $w_3 = (0, 1, 2, 1)$ to compute an orthonormal set in \mathbb{R}^4 .

 $(2 \times 4 = 8 \text{ weightage})$