D 72969

(Pages: 3)

Name	•••
------	-----

Reg. No.....

FIRST SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION DECEMBER 2019

(CBCSS)

Mathematics

MTH 1C 01-ALGEBRA-I

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Verify whether $\phi(x, y) = (x, y) + 1$ is an isometry of the plane.
- 2. Find the order of (1,2)in the group $\mathbb{Z}_3 \times \mathbb{Z}_4$.
- 3. Describe all abelian groups of order 36 upto isomorphism.
- 4. Find all homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_{12}$.
- 5. Let G be a group of order 20. Find the number of 5-Sylow subgroups of G.
- 6. Give a presentation of the Klein 4 group using two generators.
- 7. Verify whether (x-2) is a factor of $x^3 3x^2 + 3x 2$ in $\mathbb{Q}[x]$.
- 8. Let $\phi: \mathbb{Z} \to \mathbb{Z}$ be a map defined by $x \mapsto 2x$. Verify whether ϕ is a ring homomorphism.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer **six** questions choosing two from each unit. Each question has weightage 2.

Unit 1

9. Describe an isomorphism ϕ from $\mathbb{Z}_4 \times \mathbb{Z}_5$ to \mathbb{Z}_{20} . Verify that ϕ is an isomorphism.

Turn over

2 D 72969

- 10. Let H be a normal subgroup of a group G and $a, b \in G$. Show that if $x \in aH$ and $y \in bH$, then $xy \in (ab)H$.
- 11. Let M be a maximal normal subgroup of a group G. Show that G/M is simple.

Unit 2

- 12. Give a composition series for the symmetric group S_3 .
- 13. Let G be a group of order 45. Show that G has a normal subgroup of order 5.
- 14. Find all elements conjugate to $(1 \ 2 \ 3)$ in S_4 .

Unit 3

- 15. List all elements in the group algebra FG where F is the field \mathbb{Z}_2 and G is the cyclic group of order 2. Give the multiplication table for the product in FG.
- 16. Let $\phi_{\pi}: \mathbb{Q}[x] \to \mathbb{Q}$ be the evaluation homomorphism with $\phi_{\pi}(x) = \pi$. Find the kernel of ϕ_{π} .
- 17. Show that $N = \{ f \in \mathbb{R} [x] : f(1) = 0 \}$ is a maximal ideal in $\mathbb{R} [x]$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 5.

- 18. (a) Let H be a subgroup of a group G. Show that the following are equivalent.
 - (i) $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.
 - (ii) $gHg^{-1} = H$ for all $g \in G$.
 - (iii) gH = Hg for all $g \in G$.
 - (b) Show that every subgroup of an abelian group is a normal subgroup.
- 19. Let X be G-set and $g \in G$. Show that:
 - (a) $G_g: X \to X$ defined by $x \mapsto gx$ is one to one and onto.
 - (b) For $x \in X$ let $G_x = \{g \in G : gx = x\}$. Then G_x is a subgroup of G.

- 20. (a) Let F be a free group on a set A and G be any group. Let $f: A \to G$ be a map. Show that there is a homomorphism $\phi: F \to G$ such that $\phi(a) = f(a)$ for all $a \in A$.
 - (b) Show that every group is a homomorphic image of a free group.
- 21. (a) Let F be a field and $f(x) \in F[x]$ be of degree 2 or 3. Show that f(x) is irreducible if and only if f(x) has no zero in F.
 - (b) State Eisenstein criterion for irreducibilty of a polynomial.
 - (c) Show that the polynomial $x^5 + 6x^3 + 4x + 10$ is irreducible in $\mathbb{Q}[x]$.

 $(2 \times 5 = 10 \text{ weightage})$