\qquad

SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION, APRIL 2020

 B.C.A.
BCA 2C 03-COMPUTER ORIENTED STATISTICAL METHODS

(2014 Admissions)
Time : Three Hours
Maximum : 80 Marks

Part A

Answer all questions, each question carries 1 mark.

1. The relation between A.M., G.M. and H.M. is \qquad
2. Sum of squares of the deviations is minimum when deviations are taken from \qquad
3. If $\mathrm{P}(\mathrm{A})=p_{1}, \mathrm{P}(\mathrm{B})=p_{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=p_{3}$, then $(\mathrm{A} \mid \mathrm{B})=$ \qquad
4. The probability that a leap year will have 53 sundays is \qquad
5. Two random variables X and Y with density functions $f(x)$ and $f(y)$ respectively are said to be independent if $f(x, y)=$ \qquad
6. For a \qquad distribution, mean and variance are same.
7. Let $X \sim N\left(\mu, \sigma^{2}\right)$, then the central moments of odd order are \qquad
8. The independence between two attributes is tested with the help of \qquad
9. If an estimator T_{n} of population parameter θ converges in probability to θ as n tends to infinity, is said to be \qquad
10. If β is the probability of type II error, then the power of the test is \qquad ($10 \times 1=10$ marks $)$

Part B (Short Answer Type Questions)

Answer all questions, each question carries 2 marks.
11. Define the term Regression.
12. Define the intersection of two events.
13. What is meant by probability density function?
14. Distinguish between estimator and estimate.
15. State Neyrnan-Pearson Lemma.

$$
(5 \times 2=10 \text { marks })
$$

Part C (Short Essay Type Questions)

(Answer any five questions, each question carries 4 marks.
16. Explain Lorenz curve.
17. How can the regression lines be identified ?
18. Explain classical definition of probability and give its defects.
19. Distinguish between discrete and continuous random variables. Give two examples each.
20. X is a random variable for which $E(X)=10$ and $V(X)=25$. Find the positive values of a and b such that $\mathrm{Y}=a \mathrm{X}-b$ has expectation 0 and variance 1.
21. What do you mean by 'sampling distribution' of a statistic? Give an example. Also define standard error.
22. Derive the 95% confidence interval for the variance of a normal population.
23. Define :
(1) critical region; (2) significance level ; (3) null hypothesis ; (4) power of a test.

$$
(5 \times 4=20 \mathrm{marks})
$$

Part D (Essay Questions)

Answer any five questions, each question carries 8 marks.
24. Find mean, median and mode for the following data :

Class	$:$	$5-9$	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$
Frequency	$:$	8	12	23	12	7	5	3

25. Compute Karl-Pearson's co-efficient of correlation for the following data :

x	$:$	2	3	4	5	6	7	8
y	$:$	4	5	6	12	9	5	4

26. The ranking of 10 individuals at the start and at the finish of a course of a training are as follows:

Individuals	$:$	A	B	C	D	E	F	G	H	I	J
Rank before	$:$	1	6	3	9	5	2	7	10	8	4
Rank after	$:$	6	8	3	2	7	10	5	9	4	1

Calculate the rank correlation coefficient.
27. From the following results, estimate the yield of crops when the rainfall is 22 cms and the rainfall when the yield is 600 kgs :

	Rainfall in cms (X)	Yield in kgs (Y)
Mean	26.7	508.4
S.D.	4.6	36.8

Co-efficient of correlation between rainfall and yield is 0.52 .
28. Two balls are drawn from an urn containing six balls of which 4 are white and 2 are red. Find the probability that :
(a) both balls are white.
(b) both balls are of the same colour.
(c) at least one of the balls is white.
29. Find c if $p(x)=c\left(\frac{2}{3}\right)^{x} ; x=1,2,3, \ldots$ is a probability distribution. Also find $\mathrm{P}(1<\mathrm{X}<3)$ and $\mathrm{P}(\mathrm{X} \geq 3)$.
30. For random sampling from normal population $\mathrm{N}\left(\mu, \sigma^{2}\right)$, find m.l.e. for (1) μ when σ^{2} is known ; (2) σ^{2} when μ is known.
31. The diameters of 200 ball-bearings made by a mechanic during a week were found to have a mean 0.824 and standard deviation 0.042 . Find 90% and 95% confidence intervals for the mean diameter of the ball-bearings.

$$
(5 \times 8=40 \text { marks })
$$

