~	01	7	C	0
\mathbf{C}	81	. 1	O	0

(I	280	es	2
(1	az	CS	4

Name	••••••
Reg. No	**************

SECOND SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, APRIL 2020

Chemistry

CHE 2B 02—THEORETICAL AND INORGANIC CHEMISTRY-II

Time: Three Hours

Maximum: 80 Marks

Section A (One word)

Answer all questions.

Each question carries 1 mark.

- 1. Give an example of a linear operator.
- 2. Write the electronic configuration of Cr³⁺.
- 3. Arrange the following elements in the increasing order of their ionization energy : Li, Be, B, C
- 4. The most electronegative element among Group 16 elements is ———.
- 5. Sketch the d_z^2 orbital
- 6. The number of valence electrons in BeF₂ is ———.
- 7. The hybridization of NH₄+ is ———.
- 8. Which among the following is polar: CO₂, CO, BF₃?
- 9. What is the bond order of H_2^+ ion?
- 10. The 4s orbital has number of nodes.

 $(10 \times 1 = 10 \text{ marks})$

Section B (Short answers)

Answer any ten questions. Each question carries 2 marks.

- 11. What is meant by a well-behaved function?
- 12. Represent radial distribution function of 2s and 2p orbitals.
- 13. What are Laplacian operators? Give an example.
- 14. Define electron gain enthalpy. Arrange Cl, Br, F, I in the increasing order of electron gain enthalpy.
- 15. What is diagonal relationship? Give an example.
- 16. State Born-Lande equation and explain the terms.

Turn over

- 17. Write any four properties of ionic compounds.
- 18. Explain the shape of XeF₂ based on VSEPR.
- 19. How is percentage of ionic character calculated?
- 20. Represent the resonance structure of NO₃⁻
- 21. Compare bonding and anti-bonding orbitals.
- 22. He₂ molecule does not exist. Why?

 $(10 \times 2 = 20 \text{ marks})$

Section C (Paragraph)

Answer any five questions. Each question carries 6 marks.

- 23. State the postulates of quantum mechanics.
- 24. Write the Schrödinger wave equation in spherical co-ordinates and explain the terms.
- 25. Explain Pauling's scale of electronegativity.
- 26. How elements are divided into s, p, d and f blocks in the periodic table?
- 27. State Slaters rule. Mention its applications.
- 28. Represent Born-Haber cycle of the formation of an ionic compound. Give its significance.
- 29. Write briefly on band theory of metallic bonding.
- 30. Distinguish between inter and intramolecular hydrogen bonding taking suitable examples.

 $(5 \times 6 = 30 \text{ marks})$

Section D (Essays)

Answer any **two** questions. Each question carries 10 marks.

- 31. Apply time independent Schrödinger wave equation to a particle in a one-dimensional box.
- 32. a) What are quantum numbers? Explain the significance of each.
 - b) State Fajan's rules. Explain its applications.
- 33. a) What is hybridization ? Explain the geometry of PCl_5 and IF_7 based on hybridization.
 - b) Enumerate the limitations of Valence Bond Theory.
- 34. Draw the MO level diagram of $\rm O_2$ and $\rm O_2^{2-}$ and compare their bond energy and magnetic property.

 $(2 \times 10 = 20 \text{ marks})$