\qquad
\qquad
SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020
(CBCSS-UG)
Mathematics
MAT 2C 02-MATHEMATICS-II
(2019 Admissions)
Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions.
Each question carries 2 marks.
Maximum 20 marks.

1. If $f(x)=x^{3}+2 x+1$, show that f has an inverse on $[0,2]$, Find the derivative of the inverse function at $y=4$.
2. Calculate the slope of the line tangent to $r=f(\theta)$ at (r, θ) if f has a local maximum there.
3. Prove that $\tanh ^{2} x+\operatorname{sech}^{2} x=1$.
4. Find $\int \frac{d x}{\sqrt{4+x^{2}}}$.
5. Show that $\int_{0}^{\infty} \frac{d x}{\sqrt{1+x^{8}}}$ is convergent, by comparison with $\frac{1}{x^{4}}$.
6. Find $\lim _{n \rightarrow \infty}\left(\frac{n^{2}+1}{3 n^{2}+n}\right)$.
7. Sum the series $\sum_{i=1}^{\infty}\left(\frac{7}{8}\right)^{i}$.
8. State integral test and show that $\sum_{m=2}^{\infty} \frac{1}{m(\ln m)^{2}}$ converges.
9. Define dimension of a vector space. Find the dimension of the vector space P_{n} of all polynomial of degree less than or equal to n.
10. Determine whether the set of all functions f with $f(1)=0$ is a subspace of the vector space $C(-\infty, \infty)$.

Turn over

11. Use inverse of coefficient matrix to solve the system :

$$
\begin{aligned}
& 2 x_{1}-9 x_{2}=15 \\
& 3 x_{1}+6 x_{2}=16 .
\end{aligned}
$$

12. Find the eigenvalues and eigenvectors of $A=\left(\begin{array}{rr}6 & -1 \\ 5 & 4\end{array}\right)$.

Section B

Answer any number of questions.
Each question carries 5 marks.
Maximum 30 marks.
13. Polygonal line joining the points $(2,0),(4,4),(7,5)$ and $(8,3)$ is revolved about the x-axis. Find the area of the resulting surface of revolution.
14. Find the length of the cardiod $r=1+\cos \theta, 0 \leq \pi \leq 2 \pi$.
15. Find the power series of the form $\sum_{i=0}^{\infty} a_{i} x^{i}$ for $\frac{23-7 x}{(3-x)(4-x)}$. Also find the radius of convergence.
16. Evaluate $\lim _{x \rightarrow \infty} \frac{\sin x-x}{x^{3}}$ using a Macluarin's series.
17. Use Gram Schmidt orthonormalization process to transform the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ for \mathbb{R}^{3} into an orthonormal basis $\mathrm{B}^{\prime}=\left\{w_{1}, w_{2}, w_{3}\right\}$, where $u_{1}=(1,1,0), u_{2}=(1,2,2)$ and $u_{3}=(2,2,1)$.
18. Compute A^{m} for $\mathrm{A}=\left(\begin{array}{ll}8 & 5 \\ 4 & 0\end{array}\right)$.
19. Find LU factorization of $\mathrm{A}=\left(\begin{array}{rr}2 & -8 \\ 3 & 0\end{array}\right)$.

Section C

Answer any one question.
The question carries 10 marks.
Maximum 10 Marks.
20. (a) Find the area enclosed by the cardiod $r=1+\cos \theta$.
(b) Calculate $\sin \left(\frac{\pi}{4}+0.06\right)$ to within 0.0001 by using Taylor's series about $x_{0}=\frac{\pi}{4}$.
21. (a) Use an $L U$ factorization to evaluate the determinant of $A=\left(\begin{array}{rrr}-1 & 2 & -4 \\ 2 & -5 & 10 \\ 3 & 1 & 6\end{array}\right)$.
(b) Find the rank of $\mathrm{A}=\left(\begin{array}{rrrr}1 & 1 & -1 & 3 \\ 2 & -2 & 6 & 8 \\ 3 & 5 & -7 & 8\end{array}\right)$.

