\qquad
FOURTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, APRIL 2020

Mathematics

MAT 4C 04-MATHEMATICS
Time : Three Hours
Maximum : 80 Marks

Part A

Answer all the twelve questions.
Each question carries 1 mark.

1. Write Euler-Cauchy equation.
2. State the first shifting theorem for Laplace transforms.
3. Define odd function. Give an example.
4. What do you mean by a periodic function? Give an example.
5. Find $\mathrm{L}\left(t+e^{t}\right)$.
6. Find $L^{-1}\left(\frac{s}{s^{2}-a^{2}}\right)$.
7. If $\mathrm{L}(f(t))$ and $f^{\prime}(t)$ exists, find $\mathrm{L}\left(f^{\prime}(t)\right)$.
8. Define Half range Fourier sine series.
9. Write one dimensional wave equation.
10. Write the characteristic equation of the equation $y^{\prime \prime}+10 y^{\prime}+29 y=0$.
11. Write the error estimate the Trapezoidal rule.
12. Find the Wronskian of y_{1}, y_{2} where $y_{1}=\cos x, y_{2}=\sin x$.

$$
(12 \times 1=12 \text { marks })
$$

Part B

Answer any nine questions.
Each question carries 2 marks.
13. Solve $y^{\prime \prime}+y=0, y(0)=3, y(\pi)=-3$.
14. Find a basis of solutions for $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$.
15. Solve $\left(\mathrm{D}^{2}+w^{2}\right) y=0$.
16. Solve $x^{2} y^{\prime \prime}-2.5 x y^{\prime}-2 y=0$.
17. Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=-8 e^{t} \cos 2 t$.
18. Show that Laplace transform is a linear operator.
19. Find the Laplace transform of $\sinh a t$.
20. Find $L^{-1}\left(\frac{1}{(s-1)^{4}}\right)$.
21. Find $\mathrm{L}\left(\frac{1-e^{t}}{t}\right)$.
22. , Find the Fourier series of $f(x)=x-x^{2},-\pi<x<\pi, f(x+2 \pi)=f(x)$.
23. A town wants to drain and fill a small polluted swamp. The swamp averages 5 feet deep. About how many cubic yards of dirt will it take to fill the area after the swamp is drained.
24. Show that the function $y=e^{x} \cos y$ is a solution of the two dimensional Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

Part C

Answer any six questions.

Each question carries 5 marks.
25. Solve the non-homogeneous equation :

$$
y^{\prime \prime}-y^{\prime}-2 y=10 \cos x
$$

26. Solve the differential equation :

$$
\left(\mathrm{D}^{2}+4 \mathrm{D}+4\right) y=\frac{e^{-2 x}}{x^{2}} .
$$

27. Find the inverse transform of $\frac{1}{s(s+1)(s+2)}$.
28. Find $\mathrm{L}(t \sin a t)$.
29. Solve :

$$
y(t)=t^{3}+\int_{0}^{1} \sin (t-u) y(u) d u
$$

30. Find the Fourier series for $f .(x)=|x|$ is $[-\pi, \pi]$ with $f(x+2 \pi)=f(x)$.
31. Find the approximate solution to $y^{\prime}=1+y^{2}, y(0)=0$.
32. Compare the values of $\int_{0}^{1} x d x$ obtained by using Trapezoidal and Simpson's rule.
33. Given $y^{\prime}=-y, y(0)=1$. Find the value of y^{\prime} at $x, x=(0.01)(0.01)(0.04)$ by improved Euler method.

$$
(6 \times 5=30 \text { marks })
$$

Part D

Answer any two questions.

Each question carries 10 marks.
34. Solve : $x^{2} y^{\prime \prime}-z x y^{\prime}+2 y=\left(3 x^{2}-6 x+6\right) e^{x}$

$$
y(1)=2+3 e \quad y^{\prime}(1)=30 .
$$

35. Find the inverse transform of $\frac{1}{s^{2}}\left(\frac{s+1}{s^{2}+9}\right)$.
36. Find the Fourier series of $f(x)=x^{2}$ in $[-\pi, \pi]$ with $f(x+2 \pi)=f(x)$.

Hence deduce that $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \ldots \ldots=\frac{\pi^{2}}{12}$.

