C 81805

\qquad
\qquad
SECOND SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION
APRIL 2020
Mathematics
MAT 2B 02-CALCULUS

Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type Questions)
 Answer all questions.
 Each question carries 1 mark.

1. Find the minimum value of $f(x)=x^{2}-1$ on $[-1,2]$.
2. Find the critical points of $f(x)$ if $f^{\prime}(x)=(x-1)(x+2)(x-3)$.
3. Find $\lim _{x \rightarrow \infty} \frac{2 x+3}{5 x+7}$.
4. Write the sum $\sum_{k=-1}^{1} \frac{(-1)^{k}}{k+2}$ without sigma notation.
5. Evaluate $\int_{-3}^{0}[-g(x)] d x$ if $\int_{-3}^{0} g(t) d t=\sqrt{2}$.
6. State Fundamental Theorem of Calculus.
7. Evaluate $\int_{0}^{1}\left(x^{2}+\sqrt{x}\right) d x$.
8. Set up an integral to find the volume of the solid generated by revolving the shaded region about the y-axis :

9. Set up an integral to find the area of the shaded region of the figure in Question 8.
10. Set up an integral to find the length of the curve $y=x^{3 / 2}, 0 \leq x \leq 4$.
11. Set up an integral to find the area of the surface generated by revolving the curve $y=x^{3}, 0 \leq x \leq 1 / 2$ about the x-axis.
12. Find the work done by a force $\mathrm{F}(x)=x^{2} \mathrm{~N}$ along the x-axis from $x=1 \mathrm{~m}$ to $x=3 \mathrm{~m}$.

$$
(12 \times 1=12 \text { marks })
$$

Part B

Answer any nine questions. Each question carries 2 marks.
13. Find the absolute maximum value of $f(x)=x^{4 / 3}$ on $[-1,8]$.
14. If $f^{\prime}(x)=0$ at each point of an interval I, prove that $f(x)=c$ for all x in I, where c is a constant.
15. Find $f(2)$, if $f(1)=0$ and $f^{\prime}(x)=2 x$ for all x.
16. Evaluate $\sum_{k=1}^{5} k(3 k+5)$.
17. State Rolle's Theorem.
18. Find $\frac{d y}{d x}$ if $y=\int_{1}^{x^{4}} \sqrt{u d u}$.
19. Evaluate $\int_{0}^{1} t^{3}\left(1+t^{4}\right)^{3} d t$.
20. Find the area of the region in the first quadrant enclosed by the curves $x=y^{2}$ and $x=y^{3}$.
21. A pyramid 3 m . high has a square base that is 3 m . on a side. The cross-section of the pyramid perpendicular to the altitude $x m$ down from the vertex is a square $x m$ on a side. Find the yolume of the pyramid.
22. Find the volume of the solid generated by revolving the region bounded by the curve $x=\sqrt{2 \sin 2 y}, 0 \leq y \leq \pi / 2$ and the line $x=0$ about the y-axis.
23. Find the length of the curve $y^{2}+2 y=2 x+1$, from $(-1,-1)$ to $(7,3)$.
24. Find the work required to compress a spring from its natural length of 0.75 ft if the force constant is $k=16 \mathrm{lb} / \mathrm{ft}$.

$$
(9 \times 2=18 \text { marks })
$$

Part C (Short Essay Type)
 Answer any six questions.
 Each question carries 5 marks.

25. State and prove Mean Value Theorem.
26. Find the asymptotes of the curve $y=2+\frac{\sin x}{x}$ using Sandwich Theorem.
27. Find the value of c in the Mean Value Theorem for $f(x)=x^{2}$ in $[0,2]$.
28. What is the smallest perimeter possible for a rectangle whose area is $16 \mathrm{in}^{2}$.
29. Find the linearization of $f(x)=x^{3}-x$ at $x=1$.
30. Find the area of the region enclosed by the curves $y=\frac{x^{2}}{4}$ and the lines $y=x, y=1$.
31. Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $x=3$ about the line $x=3$.
32. Find the length of the curve $x=\frac{y^{3}}{3}+\frac{1}{4 y}$ from $y=1$ to $y=3$.
33. Find the center of mass of a wire of constant density δ shaped like a semicircle of radius a.

$$
(6 \times 5=30 \text { marks })
$$

Part D (Essay Type)

Answer any two questions.
Each question carries 10 marks.
34. (i) Find the intervals on which $h(x)=-x^{3}+2 x^{2}$ is increasing and decreasing. Identity the local extreme values, if any, of $h(x)$, saying where they are taken on. Which of the extreme values are absolute?
(ii) Graph the function $y=\frac{x^{3}-1}{x}$.
35. (i) Find the area of the surface generated by revolving the curve $y=x^{3}, 0 \leq x \leq 1 / 2$, about the x-axis.
(ii) Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the initial line $y=x-2$.
36. (i) Find the center of mass of a thin plate of constant density δ covering the region bounded by the parabola $y=4-x^{2}$ and below by the x-axis.
(ii) A spring has a natural length of 1 m . A force of 24 N stretches the spring to a length of 1.8 m .
(a) Find the force constant k.
(b) How much work will it take to stretch the spring 2 m . beyond its natural length?
(c) How far will a $45-\mathrm{N}$ force stretch the spring?

$$
(2 \times 10=20 \text { marks })
$$

