Reg. No.

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Mathematics

MTS 2B 02-CALCULUS OF SINGLE VARIABLE-I
 (2019 Admissions)

Time : Two Hours and a Half

Section A

Answer any number of questions.
Each question carries 2 marks.
Maximum 25 marks.

1. Let f and g be functions defined by $f(x)=x+1$ and $g(x)=\sqrt{x}$. Find the functions gof and fog. What is the domain of gof?
2. Find $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$.
3. Let $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2 .\end{array}\right.$ Show that f has a removable discontinuity at 2 . Redefine f at 2 so that it is continuous everywhere.
4. Find $\lim _{x \rightarrow \pi / 4} \frac{\sin x}{x}$.
5. Show that $f(x)=|x|$ is continuous everywhere.
6. Find the derivative of $\sqrt[3]{x}+\frac{1}{\sqrt{x}}$.
7. Find the critical points of $f(x)=x^{3}-6 x+2$.
8. Find $\lim _{x \rightarrow \infty}\left(2 x^{3}-x^{2}+1\right)$ and $\lim _{x \rightarrow-\infty} 2 x^{3}-x^{2}+1$.
9. Find the interval on which $f(x)=x^{2}-2 x$ is increasing or decreasing.
10. Find the vertical asymptote of the graph of $f(x)=\frac{1}{x-1}$.
11. Find $\int \frac{\cos x}{1-\cos ^{2} x} d x$.
12. Find $\int x e^{-x^{2}} d x$.
13. Suppose $\int_{1}^{6} f(x) d x=8$ and $\int_{4}^{6} f(x) d x=5$, what is $\int_{1}^{4} f(x) d x$.
14. Find the volume of the solid obtained by revolving the region under the graph of $y=\sqrt{x}$ on $[0,2]$ about the x-axis.
15. Find the work done in lifting a 2.4 kg . package 0.8 m . off the ground (given $g=9.8 \mathrm{~m} . / \mathrm{sec} .^{2}$).

Section B

> Answer any number of questions.
> Each question carries 5 marks.
> Maximum 35 marks.
16. Find the slope and an equation of the tangent line to the graph of the equation $y=-x^{2}+4 x$ at the
point $p(2,4)$.
17. Suppose that $g(x)=\left(x^{2}+1\right) f(x)$ and it is known that $f(2)=3$ and $f^{\prime}(2)=-1$. Evaluate $g^{\prime}(2)$.
18. (a) Show that $f(x)=x^{3}$ satisfies the hypothesis of the mean value theorem on $[-1,1]$.
(b) Find the numbers c in $(-1,1)$ that satisfies the equation as guaranteed by the mean value theorem.
19. Find the slant asymptotes of the graph of $f(x)=\frac{2 x^{2}-3}{x-2}$.
20. A car moves along a straight road with velocity function $v(t)=t^{2}+t-6,0 \leq t \leq 10$, where $v(t)$ is measured in feet per second.
(a) Find the displacement of the car between $t=1$ and $t=4$.
(b) Find the distance covered by the car during this period.
21. (a) Evaluate $\int_{-3}^{0}\left(x^{2}-4 x+7\right) d x$ by Fundamental theorem of Calculus.
(b) Use the definition of definite integral to show that if $f(x)=c$, a constant function, then $\int_{a}^{b} f(x) d x=c(b-a)$.
22. Find the center of mass of a system comprising three particles with masses 2,3 and 5 slugs, located at the points $(-2,2),(4,6)$ and $(2,-3)$ respectively.
23. Find the lengh of the graph of $x=\frac{1}{3} y^{3}+\frac{1}{4 y}$ from $\mathrm{P}\left(\frac{7}{12}, 1\right)$ to $\mathrm{G}\left(\frac{67}{24}, 2\right)$.

Section C

Answer any two questions.

Each question carries 10 marks.
24. (a) Find $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}$.
(b) Use intermediate value theorem to find the value of c such that $f(c)=7$, where $f(x)=x^{2}-x+1$ on $[-1,4]$.
(c) In a fire works display, a shell is launched vertically upwards from the ground, reaching a height $\mathrm{S}=-16 t^{2}+256 t$ feets after t seconds. The shell burst when it reaches its maximum height :
(i) A what time after launch will the shell burst.
(ii) What will be the altitude of the shell when it explodes?
25. Find the dimensions of the rectangle of greatest area that has its base on the x-axis and is inscribed in the parabola $y=9-x^{2}$.
26. Using the definiton of definite integral evaluate $\int_{a}^{b} x d x$.
27. Find the aera of the surface obtained by revolving the graph of $f(x)=\sqrt{x}$ on the interval $[0,2]$ about the x-axis.

$$
(2 \times 10=20 \text { marks })
$$

