\qquad
\qquad
SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020
(CBCSS-UG)
Statistics

STA 2C 02—PROBABILITY THEORY
 (2019 Admissions)

Time : Two Hours
Maximum : 60 Marks

Use of Calculator and Statistical tables are permitted.
 Part A (Short Answer Type Questions)
 Each question carries 2 marks.
 Maximum marks that can be scored from this part is 20 .

1. Define sample space, event of a random experiment.
2. Explain mutually exclusive and exhaustive events.
3. If $P(A)=0.6, P(A \cup B)=0.8$, find $P(B)$ when A and B are independent.
4. Define $P(A / B)$, where A and B are two events. Also state the multiplication theorem on probability.
5. Differentiate discrete and continuous random variables.
6. Find k, if $f(x)=k x^{2}$, for $0<x<1$ is a probability density function of X .
7. For a random variable X with possible values 1,2 and 3 , identify with reason, the values $F(0.5$) and $\mathrm{F}(3.2)$ where F is the distribution function of X .
8. Define Mathematical expectation of a discrete random variable X. Also show that, for a random variable $\mathrm{X},[\mathrm{E}(\mathrm{X})]^{2} \leq \mathrm{E}\left(\mathrm{X}^{2}\right)$ if the expectations exist.
9. If $\mathrm{M}_{\mathrm{X}}(t)$ is the m.g.f. of X , identify the m.g.f. of $2 \mathrm{X}-5$.
10. Find the characteristic function of X , where $\mathrm{P}(\mathrm{X}=x)=0.5$; for $x=0.1$.
11. Express coefficient of correlation between two random variables X and Y in terms of expectations.
12. If the joint p.d.f. of X and Y is $f(x, y)=1$, for $0<x<1 ; 0<y<1$, find $\mathrm{P}(\mathrm{X}>0.2 / \mathrm{Y}>0.6)$.

Part B (Short Essay/Paragraph Type Questions)

Each question carries 5 marks. Maximum marks that can be scored from this part is 30 .
13. For two events A and $\mathrm{B}, \mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.3, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.2$. Find (i) $\mathrm{P}(\mathrm{At} \mathrm{least} \mathrm{one} \mathrm{of} \mathrm{A}$ and B to happen) ; (ii) $P($ Exactly one of A and B to happen).
14. For two events A and B , prove that $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) / \mathrm{C}=\mathrm{P}(\mathrm{A} / \mathrm{C})+\mathrm{P}(\mathrm{B} / \mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B} / \mathrm{C})$.
15. Identify the distribution function of X and sketch its graph when the possible values of X are $-1,0,1$ and 2 with respective probabilities $0.2,0.35,0.4$ and 0.05 .
16. Given the p.d.f. of X as $f(x)=1$, for $0<x<1$. Find the p.d.f. of $\mathrm{Y}=-\log _{e} \mathrm{X}$.
17. Given the p.d.f. of X as $f(x)=e^{-x}$, for $0<x<\infty$. Find the m.g.f. of X and hence the variance of X using m.g.f.
18. The first three raw moments of X are $\lambda, \lambda^{2}+\lambda$ and $\lambda^{3}+3 \lambda^{2}+\lambda$. Obtain the coefficient of skewness of X and identify the condition for symmetry.
19. State and prove Cauchy-Schwartz inequality for two random variables X and Y.

Part C (Essay Type Questions)

Answer any one question.
The question carries 10 marks. Maximum marks that can be scored from this part is 10.
20. State and prove Bayes' theorem. Result of a survey from a college consists of 40% boys and 60% girls on a recently released film, reveals that 35% of the boys like the film but 30% of the girls not like the film. A randomly selected student from this college likes the film. What is the probability that the student is a girl?
21. (a) State and prove the multiplication theorem on expectation for the two random variables X and Y .
(b) If the joint p.d.f. of (X,Y) is $f(x, y)=c x y$, for $0<x<y<1$.
(i) Find the value of c; (ii) Verify whether X and Y are independent.

