FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CUCBCSS-UG)

Mathematics
MAT 5B 05-VECTOR CALCULUS

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all questions.
Each question carries 1 mark.

1. Find the domain and range of $u(x, y)=\sin x y$.
2. Evaluate Lt $\left[\frac{3-x+y}{4+x-2 y}\right]$.

$$
(x, y) \rightarrow(1,2)
$$

3. If \vec{a} is a constant vector, $\vec{x}=x \hat{i}+y \hat{j}+z \hat{k}$, then $\vec{\nabla}(\vec{r} \cdot \vec{a})=$ \qquad
4. When do we say a vector is Solenoidal?
5. What do you mean by irrotational vector?
6. Find the total differential of $\ln (x y z)$.
7. What is the linearization of the function $f(x, y, z)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$?
8. Write the condition for the differential form $\mathrm{P}(x, y, z) d x+\mathrm{Q}(x, y, z) d y+\mathrm{R}(x, y, z) d z$ to be exact?
9. State the normal form of Green's theorem in the plane.
10. If $\vec{r}=x \hat{i}+y \hat{i}+z \hat{k}$, and $r=|\vec{r}|$, then $r^{n} \vec{r}$ is solenoidal if $n=$
11. State Gauss Divergence theorem.
12. If \vec{f} and \vec{g} are irrotational vector functions then $\operatorname{div}(\vec{f} \times \vec{g})=$ \qquad
($12 \times 1=12$ marks $)$

Section B

Answer at least eight questions. Each question carries 6 marks. All questions can be attended.

Overall Ceiling 48.
13. Evaluate $\lim \left[\frac{x-y}{x+y}\right]$.

$$
(x, y) \rightarrow(0,0)
$$

14. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the pt (π, π, π) from $\sin (x+y)+\sin (y+z)+\sin (z+x)=0$.
15. Find the outward unit normal vector to the surface $\varphi(x, y, z)=3 x^{2} y-y^{3} z^{2}$ at $(1,-2,-1)$.
16. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$.
17. Find the total derivative of $u(x, y, z)=x y z$ with respect to t where $x=t+1, y=t^{2}+1, z=t^{3}+1$.
18. Find the linearization of $f(x, y, z)=x^{2}-x y+3 \sin z$ at the point $(2,1,0)$?
19. Find the directional derivative of $f(x, y, z)=x y+y z+z x$ at the pt $(1,2,3)$ in the direction of $3 \hat{i}+4 \hat{j}+5 \hat{k}$.
20. Using double integrals, obtain the area of the Lemniscate $r^{2}=4 \cos 2 \theta$.
21. Using triple integrals find the average value of $f(x, y, z)=x y z$ over the boundary of the cube $0 \leq x \leq 2,0 \leq y \leq 2,0 \leq z \leq 2$.
22. Evaluate $\int_{1}^{2} \int_{0}^{x} \frac{d x d y}{x^{2}+y^{2}}$.
23. Find the circulation of $\overrightarrow{\mathrm{F}}=(x-y) \hat{i}+x \hat{j}$ around the unit circle centered at the origin.
24. Show that the vector field $\overrightarrow{\mathrm{F}}=y z \hat{i}+z x \hat{j}+x y \hat{k}$ is conservative.
25. It $g(x, y, z)$ has continuous $2^{\text {nd }}$ order partial derivatives, show that $\vec{\nabla} g$ is irrotational.
26. State the tangential form of Green's theorem in the plane. Also state it's generalization in space.

$$
(8 \times 6=48 \text { marks })
$$

Section C

Answer at least five questions.

Each question carries 9 marks. All questions can be attended. Overall Ceiling 45.
27. Evaluate $\int_{\mathrm{C}} \overrightarrow{\mathrm{F}} \cdot d r$, where $\overrightarrow{\mathrm{F}}=\left(x^{2}+y^{2}\right) \hat{i}-2 x y \hat{j}$ where C is the rectangle in $x y$ plane bounded by $x=0, x=a, y=0$ and $y=b$.
28. If $\vec{f}(t)$ is a differentiable vector function of a scalar variable t, then prove that:

$$
\frac{d}{d f}\left[\vec{f} \vec{f}^{\prime}, \vec{f}^{\prime \prime}\right]=\left[\vec{f} \vec{f}^{\prime \prime} \vec{f}^{\prime \prime \prime}\right]
$$

29. Test the continuity of $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{2}+y^{2}} & ;(x, y)=(0,0) \\ 0 & ;(x, y)=(0,0)\end{array}\right\}$ at the origin.
30. Show that the work done by the Force field $\overrightarrow{\mathrm{F}}=y z \hat{i}+x z \hat{j}+x y \hat{k}$ is independent of the path joining the points $(-1,3,9)$ and $(1,6,-4)$. Also find the work done along any smooth curve joining $(-1,3,9)$ and $(1,6,-4)$.
31. Find the local extreme values of $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.
32. Using triple integral find the volume of the ellipsoide $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
33. Evaluate the area of the region in the $x y$ plane enclosed by $x^{2}+y^{2}=4, y=1$ and $y=\sqrt{3} x$.
34. Integrate the function $f(x, y, z)=x y z$ over the surface of the cube cut from the $1^{\text {st }}$ octant by the planes $x=1, y=1$ and $z=1$.
35. Evaluate $\int_{(1,0,0)}^{(0,1,1)} \sin y \cos x d x+\cos y \sin x d y+d z$.

$$
(5 \times 9=45 \text { marks })
$$

Section D

Answer any one question.
The question carries 15 marks.
36. Verify Gauss Divergence theorem for $\overrightarrow{\mathrm{F}}=x \hat{i}+x y \hat{j}+z \hat{k}$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
37. (a) Verify the tangential form of Green's theorem for $\overrightarrow{\mathrm{F}}=(x-y) \hat{i}+x \hat{j}$ and the Region R bounded by the unit circle $x^{2}+y^{2}=1$.
(b) State the Fundamental theorem of line integrations.
38. (a) Evaluate $\int_{\mathrm{C}} \vec{f} \cdot d \vec{r}$, if $\vec{f}=y^{2} \hat{i}+x^{2} \hat{j}-(x+z) \hat{k}$, C is the boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.
(b) For any closed surfaces enclosing of a volume V prove that $\iint_{\mathrm{S}} \operatorname{curl} \vec{f} \cdot \hat{n} d \mathrm{~S}=0$.

