D 90230

(Pages : 4)

Name.....

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CUCBCSS-UG)

Mathematics

MAT 5B 05-VECTOR CALCULUS

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all questions. Each question carries 1 mark.

- 1. Find the domain and range of $u(x, y) = \sin xy$.
- 2. Evaluate Lt $\left[\frac{3-x+y}{4+x-2y}\right]$. $(x, y) \rightarrow (1, 2)$

15/03 4-14

nath

3. If \vec{a} is a constant vector, $\vec{x} = x\hat{i} + y\hat{j} + z\hat{k}$, then $\vec{\nabla}(\vec{r}\cdot\vec{a}) = ----$

4. When do we say a vector is Solenoidal?

5. What do you mean by irrotational vector?

6. Find the total differential of $\ln(x y z)$.

7. What is the linearization of the function f(x, y, z) at the point (x_0, y_0, z_0) ?

- 8. Write the condition for the differential form P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz to be exact?
- 9. State the normal form of Green's theorem in the plane.
- 10. If $\vec{r} = x\hat{i} + y\hat{i} + z\hat{k}$, and $r = |\vec{r}|$, then $r^n \vec{r}$ is solenoidal if n = ----

Turn over

11. State Gauss Divergence theorem.

12. If \vec{f} and \vec{g} are irrotational vector functions then $\operatorname{div}(\vec{f} \times \vec{g}) = -$

$(12 \times 1 = 12 \text{ marks})$

Section B

Answer at least eight questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 48.

- 13. Evaluate $\lim_{(x, y) \to (0, 0)} \left[\frac{\lim_{x \to y} \left[\frac{x y}{x + y} \right]}{(x, y) \to (0, 0)} \right]$
- 14. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the *pt* (π, π, π) from sin $(x + y) + \sin(y + z) + \sin(z + x) = 0$.
- 15. Find the outward unit normal vector to the surface $\varphi(x, y, z) = 3x^2 y y^3 z^2$ at (1, -2, -1).
- 16. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2).
- 17. Find the total derivative of u(x, y, z) = xyz with respect to *t* where x = t + 1, $y = t^2 + 1$, $z = t^3 + 1$.
- 18. Find the linearization of $f(x, y, z) = x^2 xy + 3 \sin z$ at the point (2, 1, 0)?
- 19. Find the directional derivative of f(x, y, z) = xy + yz + zx at the *pt* (1, 2, 3) in the direction of $3\hat{i} + 4\hat{j} + 5\hat{k}$.
- 20. Using double integrals, obtain the area of the Lemniscate $r^2 = 4 \cos 2\theta$.
- 21. Using triple integrals find the average value of f(x, y, z) = xyz over the boundary of the cube $0 \le x \le 2, 0 \le y \le 2, 0 \le z \le 2$.

22. Evaluate $\int_{10}^{2x} \frac{dxdy}{x^2 + y^2}$.

- 23. Find the circulation of $\vec{F} = (x y)\hat{i} + x\hat{j}$ around the unit circle centered at the origin.
- 24. Show that the vector field $\vec{\mathbf{F}} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ is conservative.
- 25. It g(x, y, z) has continuous 2nd order partial derivatives, show that $\overline{\nabla}g$ is irrotational.
- 26. State the tangential form of Green's theorem in the plane. Also state it's generalization in space.

 $(8 \times 6 = 48 \text{ marks})$

Section C

Answer at least **five** questions. Each question carries 9 marks. All questions can be attended. Overall Ceiling 45.

27. Evaluate $\int_{C} \vec{F} \cdot dr$, where $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ where C is the rectangle in xy plane bounded by

x = 0, x = a, y = 0 and y = b.

28. If $\vec{f}(t)$ is a differentiable vector function of a scalar variable t, then prove that :

 $\frac{d}{df}\left[\vec{f}\ \vec{f}',\vec{f}''\right] = \left[\vec{f}\ \vec{f}''\ \vec{f}'''\right].$

- 29. Test the continuity of $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & ; (x, y) = (0, 0) \\ 0 & ; (x, y) = (0, 0) \end{cases}$ at the origin.
- 30. Show that the work done by the Force field $\vec{F} = yz\hat{i} + xz\hat{j} + xy\hat{k}$ is independent of the path joining the points (-1, 3, 9) and (1, 6, -4). Also find the work done along any smooth curve joining (-1, 3, 9) and (1, 6, -4).

Turn over

- 31. Find the local extreme values of $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- .32. Using triple integral find the volume of the ellipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 33. Evaluate the area of the region in the xy plane enclosed by $x^2 + y^2 = 4$, y = 1 and $y = \sqrt{3} x$.
- 34. Integrate the function f(x, y, z) = xyz over the surface of the cube cut from the 1st octant by the planes x = 1, y = 1 and z = 1.
- 35. Evaluate $\int_{(1,0,0)}^{(0,1,1)} \sin y \cos x dx + \cos y \sin x dy + dz.$

 $(5 \times 9 = 45 \text{ marks})$

Section D

Answer any **one** question. The question carries 15 marks.

36. Verify Gauss Divergence theorem for $\vec{F} = x \hat{i} + xy\hat{j} + z\hat{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$.

37. (a) Verify the tangential form of Green's theorem for $\vec{F} = (x - y)\hat{i} + x\hat{j}$ and the Region R bounded by the unit circle $x^2 + y^2 = 1$.

(b) State the Fundamental theorem of line integrations.

38. (a) Evaluate $\int_{C} \vec{f} \cdot d\vec{r}$, if $\vec{f} = y^2 \hat{i} + x^2 \hat{j} - (x+z) \hat{k}$, C is the boundary of the triangle with vertices

(0,0,0), (1,0,0) and (1,1,0).

(b) For any closed surfaces enclosing of a volume V prove that $\iint_{S} \operatorname{curl} \vec{f} \cdot \hat{n} \, dS = 0.$

 $(1 \times 15 = 15 \text{ marks})$