Name	:	•••••
US) TH	BICCI	IR_20

Reg. No :

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER BCA (FYUGP) DEGREE EXAMINATION, November 2024 **BCA1CJ102** : Mathematical Foundation for Computer Applications **2024 Admission Onwards**

(Credits: 4)

Time : 2 Hours

Section A

[Answer all. Each question carries 3 Marks] (Ceiling: 24 Marks)

- [BTL1] 1. State principal diagonal of a matrix? 2. Solve the given matrix $\begin{bmatrix} x & y \\ z & 2w \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$ [BTL3] 3. Evaluate the determinant $\begin{bmatrix} \sec \theta & \tan \theta \\ \tan \theta & \sec \theta \end{bmatrix}$ [BTL5] [BTL1] 4. Define Linear Independence of a vector. 5. Define augmented matrix. Write down the augmented matrix of the give system of [BTL4]
 - equations x + 4y - z = -5

$$x + y - 6z = -12$$

$$3x - y - z = 4$$

6. Suppose a = -2i + 3j + 5k and b = i + 2j + 3k are two vectors, then [BTL2] find the value of the dot product of these two vectors.

7.	Compute $\frac{dy}{dx}$ when $y = ($	$\sin x$	x [BT]	L2]
	\mathbf{I} $d\mathbf{r}$ \mathbf{V}	. /		

8. Find the integral of $2x - 3x^3 + \frac{1}{x^2}$ [BTL1]

- 9. Evaluate $\int_{1}^{2} \frac{3x^2+3}{x^3+3x+5} dx$ [BTL3]
- [BTL3] 10. Apply integration on $\frac{x^2 - x + 1}{r}$

Section B

[Answer all. Each question carries 6 Marks] (Ceiling: 36 Marks)

[BTL3] ^{11.} Prove that the given matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 5 & 7 & 0 \end{bmatrix}$ is singular.

Turn Over

Maximum Marks : 70

•••••

13. Determine the characteristics equation and eigen value of the matrix [BTL2] $B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix}$ 14. 10 [1 - 0 1] [2 - 1 1] [2

- 14. If a = [1, -2, 1], b = [2, -1, 1] and c = [1, 1, -2] then prove that [BTL3] $a \times (b \times c) = (a \times b) \times c.$
- 15. What you mean by 2D vector. Explain different operations in 2D vector. [BTL1]
- ^{16.} Evaluate $\frac{dy}{dx}$ where $y = \frac{\cos x}{\log x}$ [BTL4]
- ^{17.} Find the differential of $y = e^{2x^3}$ [BTL5]
- 18. Integrate $\sqrt{\sin 2x} \cos 2x \, dx$ using substitution method? [BTL5]

Section C

[Answer any one. Each question carries 10 Marks] (1x10=10 Marks)

19. (i) Find the derivative of sin x using first principle(ii) State derivative at a point	[BTL3]
^{20.} Evaluate the following $\int_0^{\pi/4} \log\left(1 + \tan x\right) dx$	[BTL3]
