QP	Code	: U24A	\078
----	------	--------	-------------

Time: 2 Hours

Reg. No	:	••••••
Name	:	

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER BCA (FYUGP) DEGREE EXAMINATION, November 2024 BCA1CJ103 : Discrete Structures for Computer Applications 2024 Admission Onwards

(Credits: 4)

Maximum Marks: 70

Section A

[Answer all. Each question carries 3 Marks] (Ceiling: 24 Marks)

1. Define tautology.	[BTL1]
2. Construct truth table for $P \rightarrow (QVR)$.	[BTL3]
3. Compare injective and subjective functions with example.	[BTL3]
4. Find x and y such that $(2x, x+y) = (6,2)$.	[BTL4]
5. Explain equivalence classes.	[BTL2]
6. Construct the union of P3 and K5.	[BTL3]
7. Define Handshaking theorem.	[BTL1]
8. Solve K3 U K4.	[BTL3]
9. Find the centre of P5.	[BTL1]
10. Explain Cut-Vertex.	[BTL2]

Section **B**

[Answer all. Each question carries 6 Marks] (Ceiling: 36 Marks)

- 11. Show that $[(PVQ) \rightarrow R] \land (\neg P) \rightarrow (Q \rightarrow R)$ is a tautology with & without using truth table. [BTL2]
- 12. Solve the given operations and draw corresponding Venn diagrams for $A=\{2, 4, 6, 8, 10, 12\}$ and $B=\{0, 4, 8, 12, 16\}$. [BTL3]
 - a) AUB b) $A \cap B$ c) B A d) AXA e) AXB
- 13. Construct a complete graph with 5 vertices and explain the properties of complete [BTL3] graph.
- 14. What is Hamiltonian graph and explain its characteristics. [BTL2]
- 15. Distinguish between adjacency matrix and incidence matrix. [BTL4]
- 16. Explain Eccentricity, cut-sets and cut-vertices in graphs with suitable examples. [BTL4]

Turn Over

17. Show that in a tree every vertex of degree greater than one is a Cut-vertex.	[BTL1]
18. Show that every connected graph contains a spanning tree.	[BTL1]

Section C

[Answer any one. Each question carries 10 Marks] (1x10=10 Marks)

19. Detail the properties & operations of sets with comprehensive explanations and	[BTL2]
examples.	

20. Discuss travelling salesman problem in detail.

[BTL5]

< **********************************