533337

D 110208

(**Pages : 3**)

Name.		• • • • • • • • • • • •	•••••	
Reg N	Io			

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 05—ABSTRACT ALGEBRA

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Let *n* be a positive integer. Prove that the congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.
- 2. Make multiplication table for \mathbb{Z}_6 .
- 3. Find the order of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$.
- 4. Let G be a nonempty set with an associative binary operation in which the equations ax = b and xa = b have solutions for all $a, b \in G$. Prove that G is a group.
- 5. Let G be group. Prove that G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.
- 6. Prove that any group of prime order is cyclic.
- 7. In $\operatorname{GL}_2(\mathbb{R})$, find the order of $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$.
- 8. Prove that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic.
- 9. Let G be a cyclic group. If G is infinite, prove that $G \cong \mathbb{Z}$.

Turn over

533337

- D 110208
- 10. Prove that the set of all even permutations of S_n is a subgroup of S_n .
- 11. Let $\phi: G_1 \to G_2$ be group homomorphism, with $K = \ker(\phi)$. Prove that K is a subgroup of G_1 such that $gKg^{-1} \in K$ for all $k \in K$ and $g \in G_1$.
- 12. Let $G = \mathbb{Z}_{12}$ and $H = \langle | 4 | \rangle$. Find all cosets of H.
- 13. State First isomorphism theorem.
- 14. Let G be a group. Prove that Aut(G) is a group under composition of functions.
- 15. Prove that any subring of a field is an integral domain.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

- 16. State and prove Euler theorem.
- 17. On \mathbb{R}^2 , define $(a_1, a_2) \sim (b_1, b_2)$ if $a_1^2 + a_2^2 = b_1^2 + b_2^2$. Check that this defines an equivalence relation. What are the equivalence classes ?
- 18. Prove that the units of \mathbb{Z}_8 forms a group under multiplication of congruences.
- 19. Let G be a group with identity element *e*, and let H be a subset of G. Prove that H is a subgroup of G if and only if the following conditions hold :
 - (a) $ab \in H$ for all $a, b \in H$;
 - (b) $e \in \mathbf{H}$; and
 - (iii) $a^{-1} \in H$ for all $a \in H$.
- 20. Let G be a group, and let H and K be subgroups of G. If $h^{-1} kh \in K$ for all $h \in H$ and $k \in K$, Prove that HK is a subgroup of G.
- 21. Prove that every subgroup of a cyclic group is cyclic.
- 22. State and prove fundamental theorem of homomorphism.

533337

533337

D 110208

23. Let G be a group with normal subgroups H, K such that HK = G and $H \cap K = \{e\}$. Prove that $G \cong H \times K$.

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum 20 marks.

- 24. a) Prove that every permutation in S_n can be written as a product of disjoint cycles
 - b) Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 6 & 3 & 8 & 1 & 4 \end{pmatrix}$ be a permutation in S_8 . Express σ as a product of disjoint cycles.
- 25. a) Let $\phi:G_1\to G_2$ be an isomorphism of groups. Prove that ϕ preserves following structural properties:
 - (i) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 ,
 - (ii) If G_1 is abelian, then so is G_2 ,
 - (iii) If G_1 is cyclic, then so is G_2 .
 - b) Prove that $\mathbb{Z}_4 \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 26. Let H be a subgroup of the group G. Prove that the following conditions are equivalent.
 - a) H is a normal subgroup of G;
 - b) aH = Ha for all $a \in G$;
 - c) for all $a, b \in G$, $ab \in H$ is the set theoretic product (aH)(bH);
 - d) for all $a, b \in G$, $ab^{-1} \in H$ if and only if $a^{-1}b \in H$.
- 27. State and prove second isomorphism theorem.

 $(2 \times 10 = 20 \text{ marks})$

533337