532947

D 110200

(**Pages : 3**)

Name.		•••••	•••••	•••••
Reg. N	I0			

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2019 Admission only)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

All questions can be answered. Each question in this section has 2 marks. Ceiling is 25.

- 1. State Cantor's theorem.
- 2. Determine the set A of all real numbers x such that $2x + 3 \le 6$.

3. Let $S = \left\{ 1 - \frac{(-1)^n}{n} / n \in \mathbb{N} \right\}$. Fin inf S and sup S.

- 4. If $a, b \in \mathbb{R}$, prove that $|a + b| \le |a| + |b|$.
- 5. State density theorem.
- 6. List five terms of the sequence $x_1 = 1, x_{n+1} = 3x_n + 1$.
- 7. Using the definition of the limit of a sequence, show that $\lim \frac{3n+1}{2n+5} = \frac{3}{2}$.
- 8. Give an example of a monotone sequence which is not convergent.
- 9. Using divergence criteria, prove that $((-1)^n)$ is divergent.
- 10. Prove that a cauhy sequence of real numbers is bounded.

Turn over

532947

D 110200

- 11. Define contractive sequence.
- 12. Determine which of the complex numbers $z_1 = 10 + 8i$, $z_2 = 11 6i$ is closest to 1 + i.
- 13. Express $-\sqrt{3} i$ in polar form.
- 14. Find the real and imaginery parts of $f(z) = z^2 (2+i)z$ as functions of x and y.
- 15. Define continuity of a complex function f(z) at z_0 .

Section B

All questions can be answered. Each question in this section has 5 marks. Ceiling is 35.

- 16. State and prove Bernoulli's inequality.
- 17. Prove that an upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$ there exists an $S_{\epsilon} \in S$ such that $u \epsilon < S_{\epsilon}$.
- 18. State and prove Archimedean property of \mathbb{R} .
- 19. Prove that the set \mathbb{R} of real numbers is not countable.
- 20. If $X = (x_n)$ is a sequence of real numbers, prove that there is a subsequence of X that is monotone.
- 21. State and prove Cauchy convergence criterion for sequences.
- 22. Find an upper bound for $\left| \frac{-1}{z^4 5z + 1} \right|$ if |z| = 2.
- 23. Prove that $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$. Using this find the argument of $i(-\sqrt{3}-i)$.

D 110200

Section C

3

Answer any **two** questions. Each question in this section has 10 marks.

- 24. (a) Let *a* and *b* be positive real numbers. Prove that $\sqrt{ab} \le \frac{a+b}{2}$ and the equality occures if and only if *a* = *b*.
 - (b) Find all $x \in \mathbb{R}$ that satisfy the equation |x+1| + |x-2| = 7.
- 25. Prove that there exits a positive real number *x* such that $x^2 = 2$.
- 26. (a) Prove that every contractive sequence is convergent.
 - (b) Let $f_1 = f_2 = 1$ and $f_{n+1} = f_n + f_{n-1}$. Define $x_n = \frac{f_n}{f_{n-1}}$. Prove that $\lim x_n = \frac{-1 + \sqrt{5}}{2}$.
- 27. (a) Find the four fourth roots of z = 1 + i.
 - (b) Solve the simultaneous equations |z| = 2 and |z-2| = 2.

 $(2 \times 10 = 20 \text{ marks})$