533105

D 110211

(**Pages : 3**)

Name.		•••••	•••••	•••••
Rog N	In			

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 08—LINEAR PROGRAMMING

(2020 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

Section A ((Short Answer Type)

All questions can be answered. Each question carries 2 marks. Ceiling 20 Marks.

1. Draw the set of points (x, y) satisfying the constraints

 $2x + y \le 8$, $x + 2y \le 10$, $x \ge 0$, $y \ge 0$.

- 2. Write the canonical maximization linear programming problem.
- 3. Define a convex subset of \mathbb{R}^2 . Also draw a convex set and a non-convex set in \mathbb{R}^2 .
- 4. Let S be a convex set in \mathbb{R}^2 . Define an extreme point of S.
- 5. Consider the canonical maximum tableau below :

x	у	-1		
1	2	3	$= -t_1$	
4	5	6	$=-t_{2}$	
7	8	9	= f	

State the canonical maximization linear programming problem represented by the tableau above.

- 6. Write the canonical slack maximization linear programming problem.
- 7. State Von-Neumann Minimax Theorem.
- 8. What is complementary slackness of a dual canonical linear programming problem ?

Turn over

533105

```
533105
```

D 110211

- 9. What is the basic feasible solution of a balanced transportation problem ?
- 10. Define hyper plane and closed half-space of \mathbb{R}^n .
- 11. What is the mixed strategy of a matrix game?
- 12. What is the general balanced assignment problem ?

Section B (Paragraph/Problem Type)

All questions can be answered. Each question carries 5 marks. Ceiling 30 marks.

13. Solve graphically : Maximize f(x, y) = 30x + 50y subject to

 $2x + y \le 8, x + 2y \le 10, x \ge 0, y \ge 0.$

- 14. State Duality Theorem.
- 15. Solve the transportation problem given below :

20	10	30	
7	3	5	30
10	5	9	20
7	2	4	10

16. Solve the assignment problem given below :

38	21	34
41	14	36
28	20	25

- 17. Write the simplex algorithm for Maximum Tableau's.
- 18. Find the von Neumann value and the optimal strategy for each player in the matrix games below :

- 1		1	- 1	2
- 1	-	- 1	1	1
0		1	1	-1

19. What is a two-person zero-sum matrix game ?

533105

533105

D 110211

Section C (Essay Type)

Answer any **one** of the following questions. The question carries 10 marks.

20. Solve the canonical linear programming problem using simplex algorithm to the minimum tableau given below :

x_1	20	25	300
x_2	40	20	500
-1	1000	800	0
	= <i>t</i> ₁	$=t_2$	= g

21. Solve the following maximization problem :

Maximize f(x, y) = x + 3y subject to $x + 2y \le 10, \ 3x + y \le 15, \ x \ge 0, y$ is unconstrained.

 $(1 \times 10 = 10 \text{ marks})$