Reg. No	:	•••••
Name	:	•••••

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER B.Voc (CBCSS-VUG) DEGREE EXAMINATION, November 2024 B.Voc Software Development SDC1IT01 : Discrete Mathematics 2024 Admission Onwards (Credits: 4)

Time : 2.5 Hours

Maximum Marks : 80

Section A

Short answer type carries 2 Marks each (15x2=30 marks) (Ceiling 25)

	[BTL1]		
1. "Do you speak English" Is this a proposition or not? Justify.			
2. Define Tautology.			
3. Define predicate with an example.			
4. State De Morgan's law in Boolean Algebra.	[BTL2]		
5. Show that the relation $R = \{ (a,b) \in z : a=b \}$ is a partial ordering.	[BTL3]		
6. Draw the schematic diagram of NOR gate with input output table.	[BTL5]		
7. Define a multigraph with an example.	[BTL2]		
8. Draw the cubic graph.	[BTL1]		
9. Define a complete bipartite graph.	[BTL3]		
10. Describe a weighted graph with the help of an example.	[BTL4]		
11. Describe the eccentricity and radius of a tree.			
12. Define a cut vertex and give an example.			
13. Define Kuratowski's second graph and give an example.			
14. Describe the dual graph of a graph.			
15. Sketch a graph with 5 vertices and 7 edges.	[BTL3]		
Section B			
Paragraph types carries 5 Marks each (8x5=40 Marks) (Ceiling 35)			

 16. Check whether which of the following relations is an equivalence relation or not on the set S = {0,1,2,3} i) R₁ = { (0,0), (1,1), (2,2), (3,3), (3,1) } 	[BTL2]
ii) $R_2 = \{ (0,0), (1,1), (1,2), (2,1), (2,2), (3,3), (2,3), (1,3), (3,2), (3,1) \}$	
17. Explain Distributive laws of logic with truth table.	[BTL4]
18. State and prove boundedness law of Boolean Algebra.	[BTL1]
19. Simplify the Boolean function $Y = (A+B).(A+C)$.	[BTL3]

20. Explain the following terms with a suitable example

- i) walk
- ii) trail
- iii) path
- 21. Explain colour class of a graph. Draw the graph G = (V, X), where [BTL4] $V = \{1, 2, 3, 4\}, X = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ and find the chromatic number and colour class of the graph G = (V, X).
- 22. Explain the terms connectivity and edge connectivity of a graph. [BTL4]
- 23. Define a directed graph, and draw a digraph with 4 vertices and 8 edges. [BTL2]

Section C

Essay-type carries 10 Marks : Answer any two questions.

24. Construct the truthtable of $\neg (p \land q) \lor (p \land r) \rightarrow p$.	[BTL2]
25. State and prove De morgan's law of Boolean Algebra.	[BTL2]
26. Explain an Eularian graph and a Hamiltonian graph with the help of an example.	[BTL4]
27. Draw the graph $G = (V, X)$ where $V = \{v_1, v_2, v_3, v_4, v_5\}$ and $X = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_4\}, \{v_4, v_5\}\}$. Also, give its incidence matrix.	[BTL4]

< ***********************