QP (Code:	U24A	.050
------	-------	------	------

Reg. No	:	••••••
Name	:	

Maximum Marks: 70

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER B.A./B.Sc./B.Com/BSW (FYUGP) DEGREE EXAMINATION, November 2024 **MAT1MN103 : Basic Calculus 2024 Admission Onwards**

(Credits: 4)

Time : 2 Hours

Section A

[Answer all. Each question carries 3 Marks] (Ceiling: 24 Marks)

10. State the Fundamental theorem of calculus.	[BTL1]
9. Find $\int \frac{\sin x}{\cos^2 x} dx$.	[BTL3]
9. $\sin x$	
8. Explain point of inflection of a function.	
7. Define absolute maximum and absolute minimum of a function.	
6. Find the derivative of $y = \frac{5x-2}{x^2+1}$.	[BTL2]
5. Describe the continuity of the function $y = \sin x$.	
4. Find the derivative of $y = \cos x - \frac{\pi}{3} \sin x$.	[BTL3]
3. If $f(x) = 5 - x$ and $g(x) = x^2$. Find $\lim_{x \to 1} g(f(x))$.	[BTL4]
2. Find $\lim_{x \to -4} (\frac{1}{2}x - 1)$.	
1. Find the domain and range of the function, $f(x) = \frac{3}{x}$.	

Section **B**

[Answer all. Each question carries 6 Marks] (Ceiling: 36 Marks)

- ^{11.} Show that the functions f(x) = 5x + 1 and $g(x) = \frac{x-1}{5}$ are inverse functions of [BTL1] each other.
- [BTL5] 12. Explain the existence of $\lim_{x\to 0} \frac{1}{r^2}$.

13. Find the slope of the graph of $f(x) = x^4$ for each value of x. [BTL1] i) x = -1ii) x = 0iii) x = 1**Turn Over**

3. If
$$f(x) = 5 - x$$
 and $g(x) = x^2$. Find $\lim_{x \to 1} g(f(x))$. [BTL4]

$$x^2 + 1$$

14. Find the derivative of $y = \frac{(x-2)^2}{\sqrt{x^2+1}}, x \neq 2.$ [BTL5]

- 15. Find the extrema of $f(x) = 3x^4 4x^3$ on the interval [-1,2]. [BTL1]
- 16. Find the open intervals on which $f(x) = x^3 \frac{3}{2}x^2$ is increasing or decreasing. [BTL3]
- 17. Find the particular solution of the differential equation that satisfies the initial [BTL3] condition $h'(x) = e^x$, h(0) = 4.
- 18. Evaluate the function $f(x) = \int_0^x \cos t dt$ at $x = 0, \pi/6, \pi/4, \pi/3$ and $\pi/2$. [BTL5]

[BTL4]

[BTL5]

Section C

[Answer any one. Each question carries 10 Marks] (1x10=10 Marks)

- 19. Find the following limits.
 - i) $\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x^2}$. ii) $\lim_{x \to 0} \frac{x^2}{x^2-x}$.

20. i) State and prove Mean value theorem.

ii) Find all critical points of the function $g(x) = x - \sqrt{x}$.