Turn Over

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20 I SEMESTER B.A. / B.Sc / B.Com / BSW (FYUGP) DEGREE EXAMINATION, November 2024

PHY1MN102 : Properties of Matter and Thermodynamics 2024 Admission Onwards

(Credits: 4)

Maximum Marks : 70

Section A

[Answer all. Each question carries 3 Marks] (Ceiling: 24 Marks)

1.	What is meant by centre of mass of a body?	[BTL1]
2.	Distinguish between cohesive force and adhesive force.	[BTL2]
3.	How would you analyze the different types of stress?	[BTL4]
4.	How do the concepts of working stress and factor of safety interact, and how would you analyze their roles in determining the structural safety of a mechanical design?	[BTL4]
5.	How can the relationship between high cholesterol and high blood pressure be explained in the context of a patient's cardiovascular health?	[BTL3]
6.	What is Thermodynamic Equilibrium?	[BTL1]
7.	Most cooking involves isobaric process. Why?	[BTL4]
8.	Explain the concept of adiabatic cooling with an example.	[BTL2]
9.	Explain the Third Law of Thermodynamics and describe absolute zero.	[BTL3]
10.	How would you apply the sign convention for entropy changes?	[BTL3]

Section **B**

[Answer all. Each question carries 6 Marks] (Ceiling: 36 Marks)

- 11. Find the rigidity modulus and bulk modulus of copper. Given $Y=1.2 \times 10^{11} \text{ Nm}^{-2}$, $\sigma =0.25$ [BTL3]
- 12. Draw a stress-strain graph and explain in detail? Identify the material's elastic and plastic [BTL2] regions.

Time : 2 Hours

QP Code:U24A071

Reg. No:Name:

- 13. Explain Pascal's law with examples.
- 14. In giving a patient a blood transfusion, the bottle is setup so that the level of blood is [BTL4]
 1.3m above the needle which has an internal diameter of 3.6×10⁻⁴m and is 0.03m in length.
 If 4.5×10⁻⁶m³ of blood passes through the needle in one minute, calculate the viscosity of blood, if its density is 1020kgm⁻³

[BTL1]

- 15. Prove that work done in a Thermodynamic Process depends on the path. [BTL3]
- 16. Calculate the work done when one gram molecule of an ideal gas expands isothermally at [BTL4] 27⁰C to double its original volume. R=8.3 *JK*⁻¹*mol*⁻¹
- 17. The efficiency of an ideal engine is 0.2. If the temperature of the sink is lowered by 20^oC, [BTL4] efficiency becomes 0.25. Find the temperature of the source and sink.
- 18. A Carnot's engine working as a refrigerator between 260K & 300K receives 500 calories [BTL5] of heat from the reservoir at the lower temperature. Calculate the amount of heat rejected to the reservoir at the higher temperature. Calculate the work done.

Section C

[Answer any one. Each question carries 10 Marks] (1x10=10 Marks)

19. Derive Meyer's Relation.	[BTL4]
20. Derive Bernoulli's Equation and mention any of its applications.	[BTL4]

< **********************