QP Code : U24A058	Reg. No	:	•••••
	Name	:	•••••

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER B.A./B.Sc./B.Com/BSW (FYUGP) DEGREE EXAMINATION, November 2024

BTY1MN102: Bio-instrumentation **2024 Admission Onwards** (Credits: 4)

Time: 2 Hours Maximum Marks: 70

Section A					
	[Answer all. Each question carries 3 Marks] (Ceiling: 24 Marks)				
1.	What is electrophoresis? Explain its principle and its basic application in biological research.	[BTL1]			
2.	What is the difference between a single beam and a dual beam spectrophotometer? Provide one example where each is used.				
3.	3. Analyze how the choice of solvent and stationary phase impacts the separation of compounds in thin layer chromatography (TLC). What factors would you consider to optimize the resolution?				
4.	4. Given a buffer solution with a weak acid and its conjugate base, how would you calculate the pH using the Henderson-Hasselbalch equation? Apply this to a solution with acetic acid and sodium acetate				
5.	Explain the principle of paper chromatography and describe how it is used to separate pigments.	[BTL2]			
6.	6. How would you set up a flame photometer to measure the concentration of sodium and potassium ions in a water sample? Discuss the calibration and sample preparation steps.				
7.	How does ion-exchange chromatography work? Explain how the choice of ion-exchange resin affects the separation process.	[BTL2]			
8.	Analyze the effectiveness of a distillation unit in separating a mixture of two volatile liquids with close boiling points. How would you modify the system to improve separation efficiency?	[BTL4]			
9.	Compare vertical and horizontal gel electrophoresis systems. How do their applications differ in separating biomolecules?	[BTL2]			
10	Compare the performance of a deep freezer at -20°C and -80°C for storing biological samples. Analyze the factors that influence the choice of temperature for	[BTL4]			

specific types of samples.

Section B

[Answer all. Each question carries 6 Marks] (Ceiling: 36 Marks)

- 11. What is HPLC? Explain its working principle and describe the major components of [BTL1] an HPLC system. [BTL2] 12. Describe the working principles of a water bath and a micropipette. How do these instruments support experimental accuracy and precision in a laboratory setting? Provide examples of their usage in a microbial growth experiment. [BTL1] 13. What is immunoelectrophoresis? Describe its principle and the steps involved in performing the technique. [BTL2] 14. Explain the working principles of an incubator and a lyophilizer. Compare their roles in biological research, focusing on how each contributes to sample preparation and preservation. 15. How would you set up a gas chromatograph to separate and identify components in [BTL3] a mixture of volatile compounds? Describe the factors you would adjust (e.g., temperature, carrier gas) and how you would interpret the chromatogram. [BTL3] 16. How would you adjust and apply a phase contrast microscope to observe live, unstained cells? Describe the setup process, how it differs from bright field microscopy, and the specific advantages of phase contrast for this application. [BTL5] 17. Evaluate the limitations of Beer Lambert's Law when applied to real-world samples. How might deviations from the law occur, and what strategies would you employ to mitigate these issues in a laboratory experiment involving colorimetry? [BTL3] 18. Given a contaminated culture in a laminar air flow cabinet, how would you apply sterile techniques to prevent further contamination? Describe the steps and precautions involved in maintaining sterility during an experiment. Section C [Answer any one. Each question carries 10 Marks] (1x10=10 Marks)
- 19. Explain the working principle of a UV-Vis spectrophotometer. Describe how you would use this instrument to measure the absorbance of a sample. Discuss the significance of the wavelength selection.
- 20. Describe the principle of polyacrylamide gel electrophoresis (PAGE) and explain the steps involved in performing this technique.

< ********** >