QP Code:P24A037		Reg. No	:	•••••
	I	Name	:	•••••
ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20 I SEMESTER M.Sc(CBCSS -PG)DEGREE EXAMINATION, November 2024				
M.Sc Mathematics				
MTH1C04 : DISCRETE MATHEMATICS				
2024 Admission Onwards				
Time:3 Hours			Ma	ximum Weightage:30
Part A (Answer all questions. Weightage 1 for each question)				
1.	Define a partial order relation on a set X with an exam	ple.		[BTL2]
2.	Define Complete Disjunctive Normal Forms.			[BTL2]
3.	Define a co-atom of a Boolean Algebra			[BTL2]
4.	Explain the diagramatic representation of a graph.			[BTL4]
5.	Explain edge connectivity.			[BTL4]
6.	Define the dual of a graph and give an example.			[BTL1]

- 7. Explain concatenation of two strings.
- 8. Define the language accepted by an nfa.

(8x1 = 8 Weightage)

[BTL4]

[BTL3]

Part B

(Answer any two questions from each module. Weightage 2 for each question)

Unit-I

- 9. Prove that if a subset of a partially ordered set has a maximum element, then it is [BTL1] unique.
- 10. Let $(X, +, \cdot, ')$ be a Boolean Algebra, $x, y \in X$, define $x \le y$ if $x \cdot y' = 0$. Prove [BTL2] that
 - i) \leq makes the underlying set of a Boolean Algebra into a lattice

ii) 0 and 1 are the minimum and the maximum elements of this lattice

11. Prepare the table of values of the Boolean function [BTL3] $f(x_1, x_2, x_3) = x'_1 x_2 (x'_1 + x_2 + x_1 x_3)$

Unit-II

- 12. For a connected plane graph G, prove that n m + f = 2, where f denotes [BTL3] the number of faces of G
- 13. A vertex v of a connected graph G with atleast three vertices is a cut vertex of G if [BTL3] and only if there exist vertices u and w of G, distinct from v, such that v is in every u w path in G
- 14. i) Prove that the sum of the degrees of the vertices of a graph is equal to [BTL3] twice the number of its edges
 - ii) Prove that in any graph G, the number of vertices of odd degrees is even.

Unit-III

15. Find a grammar that generates $L = \{a^n b^{n+1} : n \ge 0\}$ [BTL1]

16. Let $M = (Q, \sum, \delta, q_0, F)$ be a deterministic finite accepter, and let G_M be its associated transition graph. Then prove that for every $q_i, q_j \in Q$ and $w \in \sum^+$, $\delta^*(q_i, w) = q_j$ if and only if there is in G_M a walk with label w from q_i to q_j

17. Let G_M be the transition graph for some dfa M, Prove the following [BTL2]
i) If L(M) is infinite, then G_M must have atleast one cycle for which there is a path from the initial vertex to some vertex in the cycle and a path from some vertex in the cycle to some final vertex.
ii) If L(M) is finite, then no such cycle exists.

(6x2 = 12 Weightage)

Part C

(Answer any two questions. Weightage 5 for each question)

18. Let $(X,+,\cdot,')$ be a Boolean Algebra. Then prove the following properties for all x,y,z [BTL2] of X

i) x+x = x and $x \cdot x = x$ ii) x+1 = 1 and $x \cdot 0 = 0$ iii) $x+x \cdot y = x$ and $x \cdot (x+y) = x$ iv) x+(y+z) = (x+y)+z and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ v) If x+y = 1 and $x \cdot y = 0$ then y = x'vi) (x')' = x

- 19. For a connected graph G, prove that the following statements are equivalent [BTL3]i) G is Eulerian
 - ii) The degree of each vertex of G is an even positive integer
 - iii) G is an edge-disjoint union of cycles
- 20. For any loopless connected graph G, prove that $\kappa(G) \leq \lambda(G) \leq \delta(G)$ [BTL2]
- 21. Let *L* be the language accepted by a nondeterministic finite accepter [BTL2] $M_N = (Q_N, \sum, \delta_N, q_0, F_N)$. Then prove that there exists a deterministic finite accepter $M_D = (Q_D, \sum, \delta_D, \{q_0\}, F_D)$ such that $L = L(M_D)$

(2x5 = 10 Weightage)

< ***********************