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Part A
(Answer all questions. Weightage 1 for each question)

 

1. If  is a  matrix with entries in the field , Then prove that  
.

[BTL2] 

2. Define an ordered basis for a vector space and write the standard ordered
basis for .

[BTL1] 

3. Find two linear operators  and  on  such that  but . [BTL3] 

4. If  is a field of complex numbers, which vectors in  are linear combinations of [BTL3] 

5. Define a linear functional. Give an example. [BTL1] 

6. Define the following for a linear operator :
i). Characteristic Polynomial
ii). Characteristic Value
iii). Characteristic Vector
iv). Characteristic Space

[BTL1] 

7. Let S be any set of vectors in an inner product space V. then show that  is a
subspace of V.

[BTL2] 

8. For  prove that 
 is an inner product in .

[BTL3] 

(8x1 = 8 Weightage)
 

Part B
(Answer any two questions from each module. Weightage 2 for each question)

Unit-I

9.  Prove that a non empty subset  of  is a subspace of  if and only if for each
pair of vectors  in   and each scalar  in  , the vector   is
again in .                                                                                               
                                                                                                                 Turn Over 

[BTL2] 
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10. Is the vector  in the subspace of  spanned by the vectors 
.   

                                                                                                       Turn Over

 

[BTL2] 

11. Let  be the vector space of all  matrices over the field , and let  be a
fixed  matrix. If  is  a linear transformation from into

? Justify your answer.

[BTL4] 

Unit-II

12. If  and  are subspaces of a finite dimensional vector space, then  if
and only if .

[BTL2] 

13. If and  are linear functionals on a vector space , then show that  is a scalar
multiple of  if and only if the nullspace of  contains the nullspace of .

[BTL4] 

14. Let T be a linear operator on an n dimensional vector space V. Then prove that the
characteristic and the minimal polynomial for T have same roots except for
multiplicities.

[BTL3] 

Unit-III

15. Find a projection E which projects  onto the sub spacespanned by  along
the sub spacespanned by .

[BTL3] 

16. Let W be a finite dimensional subspace of an inner product space V and let E be the
orthogonal projection of V on W. Then prove that  E is an idempotent linear
transformation of V onto W, is the nullspace of E and .

[BTL2] 

17. Find an inner product on  such that  . [BTL4] 

(6x2 = 12 Weightage)
 

Part C
(Answer any two questions. Weightage 5 for each question)

 

18. Let  be an -dimensional vector space over the field , and let  be an 
dimensional vector space over . Then prove that  the space  is finite-
dimensional and has dimension .

[BTL3] 

19. Let V be a finite dimensional vector space over the field Fand let T be a linear
operator on V. Then prove that T is diagonalisable if and only if the minimal
polynomial for T has the form  where  are
distinct elements of F.

[BTL4] 

20. State and prove Cayley Hamilton Theorem. [BTL4] 

21. Prove that every finite dimensional inner product space has an orthonormal basis. [BTL2] 

(2x5 = 10 Weightage)
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