QP Code : P24A019

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER M.Sc. (CBCSS-PG) DEGREE EXAMINATION, November 2024 MSc Mathematics MTH1C02 : Linear Algebra 2024 Admission Onwards

Time : 3 Hours

Maximum Weightage : 30

Part A

(Answer all questions. Weightage 1 for each question)

1.	If A is a $m \times n$ matrix with entries in the field F, Then prove that $rowrank(A) = columnrank(A)$.	[BTL2]
2.	Define an ordered basis for a vector space and write the standard ordered basis for \mathcal{R}^n .	[BTL1]
3.	Find two linear operators T and U on \mathcal{R}^2 such that $TU = 0$ but $UT \neq 0$.	[BTL3]
4.	If C is a field of complex numbers, which vectors in C^3 are linear combinations of $(1,0,-1), (0,1,1)$ and $(1,1,1)$?	[BTL3]
5.	Define a linear functional. Give an example.	[BTL1]
6.	 Define the following for a linear operator T: V – V: i). Characteristic Polynomial ii). Characteristic Value iii). Characteristic Vector iv). Characteristic Space 	[BTL1]
7.	Let S be any set of vectors in an inner product space V. then show that S^{\perp} is a subspace of V.	[BTL2]
8.	For $lpha=(x_1,x_2); eta=(y_1,y_2)$ in \mathcal{R}^2 prove that $(rac{lpha}{eta})=x_1y_1-x_2y_1-x_1y_2+4x_2y_2$ is an inner product in \mathcal{R}^2 .	[BTL3]
	(8x1 = 8 Weightage)	

Part B

(Answer any two questions from each module. Weightage 2 for each question)

Unit-I

9. Prove that a non empty subset W of V is a subspace of V if and only if for each [BTL2] pair of vectors α, β in W and each scalar c in \mathcal{F} , the vector $c\alpha + \beta$ is again in W.

Turn Over

10. Is the vector (3, -1, 0, -1) in the subspace of \mathcal{R}^5 spanned by the vectors [BTL2] (2, -1, 3, 2), (-1, 1, 1, -3) and (1, 1, 9, -5).

Turn Over

11. Let V be the vector space of all $n \times n$ matrices over the field F, and let B be a [BTL4] fixed $n \times n$ matrix. If T(A) = AB - BA is T a linear transformation from V into V? Justify your answer.

Unit-II

- 12. If W_1 and W_2 are subspaces of a finite dimensional vector space, then $W_1 = W_2$ if [BTL2] and only if $W_1^0 = W_2^0$.
- 13. If f and g are linear functionals on a vector space V, then show that g is a scalar multiple of f if and only if the nullspace of g contains the nullspace of f. [BTL4]
- 14. Let T be a linear operator on an n dimensional vector space V. Then prove that the [BTL3] characteristic and the minimal polynomial for T have same roots except for multiplicities.

Unit-III

- 15. Find a projection E which projects \mathcal{R}^2 onto the sub spacespanned by (1, -1) along ^[BTL3] the sub spacespanned by (1, 2).
- 16. Let W be a finite dimensional subspace of an inner product space V and let E be the [BTL2] orthogonal projection of V on W. Then prove that E is an idempotent linear transformation of V onto W, W^{\perp} is the nullspace of E and $V = W \oplus W^{\perp}$.
- 17. Find an inner product on \mathcal{R}^2 such that $(e_1/e_2) = 2$. [BTL4]

(6x2 = 12 Weightage)

Part C

(Answer any two questions. Weightage 5 for each question)

- 18. Let V be an n-dimensional vector space over the field F, and let W be an m- [BTL3] dimensional vector space over F. Then prove that the space L(V, W) is finite-dimensional and has dimension mn.
- 19. Let V be a finite dimensional vector space over the field Fand let T be a linear [BTL4] operator on V. Then prove that T is diagonalisable if and only if the minimal polynomial for T has the form $p = (x c_1) \cdots (x c_k)$ where c_1, c_2, \cdots, c_k are distinct elements of F.
- 20. State and prove Cayley Hamilton Theorem.
- 21. Prove that every finite dimensional inner product space has an orthonormal basis. [BTL2] (2x5 = 10 Weightage)

< *********

[BTL4]