QP Code : P24A029

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER M.Sc. (CBCSS-PG) DEGREE EXAMINATION, November 2024 **MSc Mathematics** MTH1C03 : Real Analysis- I **2024 Admission Onwards**

Time : 3 Hours

Maximum Weightage: 30

Part A

(Answer all questions. Weightage 1 for each question)

1. She	ow that set of all rational numbers is countable.	[BTL1]	
2. Sh	ow that arbitrary union of open sets is open.	[BTL2]	
	f is a continuous real function on a metric space X, then prove that the zero set of $Z(f)$ is closed.	[BTL3]	
	ow that L'Hospitals' rule need not hold for Complex valued functions using a table example.	[BTL3]	
	f(x) = 0 for all irrational x and $f(x) = 1$ for all rational x, prove that f is not emann integrable on [a,b].	[BTL4]	
	t f be defined on [a,b]. Show that, if f is differentiable at x in [a,b], then f is ntinuous at x.	[BTL2]	
	t γ be a curve in the complex plane, defined on $[0, 2\pi]$ by $\gamma(t) = e^{2it}$. Prove that e length of γ is 4π .	[BTL2]	
	t f_n be a sequence of Riemann integrable functions such that $f_n \to f$. Is femann integrable? Justify your answer.	[BTL3]	
	(8x1 = 8 Weightage)		

Part B

(Answer any two questions from each module. Weightage 2 for each question)

Unit-I

9.	Show that compact subsets of metric spaces are closed.	[BTL2]
	. Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.	[BTL2]

11. Prove that in a metric space, a continuous function maps connected sets to [BTL3] connected sets.

Turn Over

Unit-II

- 12. If $f \in \mathscr{R}(\alpha)$ and $g \in \mathscr{R}(\alpha)$ on [a,b], then show that $|f| \in \mathscr{R}(\alpha)$ and [BTL2] $|\int_a^b f d\alpha| \le \int_a^b |f| d\alpha.$
- 13. State and prove generalised mean value theorem for real functions. [BTL3]
- 14. Show that for a differentiable function f that has a local maximum at a point x in [BTL4] (a,b), f'(x) = 0.

Unit-III

- 15. Suppose $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly [BTL3] on E, then show that f is continuous on E.
- 16. Prove that sequence $\{f_n\}$ converges to f with respect to the metric on $\mathscr{C}(X)$, (set [BTL3] of all complex valued continuous, bounded functions on X) if and only if $f_n \to f$ uniformly on K.
- 17. Show by a suitable example that every convergent sequence neednot contain a [BTL4] uniformly convergent subsequence.

(6x2 = 12 Weightage)

Part C

(Answer any two questions. Weightage 5 for each question)

- 18. (a) Show that Cantor set is perfect.(b) Show that every k-cell is compact.
- 19. (i) Suppose α increases on [a,b], $a \le x_0 \le b$, α is continuous at x_0 , [BTL3] $f(x_0) = 1$ and f(x) = 0 if $x \ne x_0$. Prove that $f \in \mathscr{R}(\alpha)$ and $\int f d\alpha = 0$. (ii) Suppose $f \ge 0$, f is continuous on [a,b] and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all x in [a,b].
- 20. (a) Prove that continuity is a sufficient condition for Riemann Stieltjes integrability. ^[BTL3]
 (b) Assume α increases monotonically and α' ∈ 𝔅 on [a,b]. Let f be bounded real function on [a,b]. Then prove that f ∈ 𝔅(α) if and only if fα' ∈ 𝔅.
- 21. (a)Suppose {f_n} is a sequence of functions, differentiable on [a,b] and such that {f_n(x₀)} converges for some point x₀ on [a,b]. If {f'_n} converges uniformly on [a,b], prove that {f_n} converges uniformly on [a,b] to a function f and f'(x) = lim_{n→∞} f'_n(x), a < x < b.
 (b) Show that there exists a real continuous function on the real line which is nowhere differentiable.

(2x5 = 10 Weightage)

< ***********************

[BTL2]