QP Code: P24A031	Reg. No	:	••••••
	Name	:	•••••

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

I SEMESTER M.Voc (CBCSS-VPG) DEGREE EXAMINATION, November 2024 M.Voc Applied Biotechnology

SDC1AB01 : Cell and Molecular Biology 2024 Admission Onwards

Time: 3 Hours Maximum Weightage: 30

Part A

Short answer type questions: Answer any four questions. Weightage 2 for each question			
1. Discuss on the different types of cytoskeleton filaments.	[BTL2]		
2. Describe the role of protein kinases and phosphatases in signal transduction.	[BTL3]		
3. Explain the concept of ribozyme technology and its significance in molecular biology.	[BTL3]		
4. Describe the mechanisms by which inhibitors of protein synthesis function.	[BTL2]		
5. Explain briefly Na+/glucose transporter with a neat diagram.	[BTL1]		
6. Describe the properties of genetic code and explain the importance of the wobble hypothesis.	[BTL4]		
7. Detail the molecular mechanism by which miRNAs regulate gene expression in eukaryotic cells.	[BTL3]		
(4x2 = 8 Weightage)			
Part B			

Short essay-type questions: Answer any four questions. Weightage 3 for each question

8. Describe the basic structure, organization, and composition of prokaryotic and

	eukaryotic cells.	
9.	Evaluate the efficiency and specificity of the protein transport systems to mitochondria, chloroplasts, and peroxisomes	[BTL5]
10	. Briefly explain the general principles of cell signalling.	[BTL2]
11	. Design the DNA repair mechanism in response to double-strand breaks and base mismatches.	[BTL6]

12. Explain the mechanism of protein localization. [BTL1]

Turn Over

[BTL1]

[BTL3] 13. Compare the processes of apoptosis and necrosis [BTL5] 14. Compare the effectiveness of different DNA replication inhibitors on prokaryotic and eukaryotic cells. (4x3 = 12 Weightage)Part C Essay-type questions: Answer **any two** questions. Weightage **5** for each question 15. Compare and contrast the contributions of the Hershey-Chase and Meselson-Stahl [BTL2] experiments to our understanding of DNA as the genetic material. [BTL2] 16. Compare and contrast the three types of eukaryotic RNA polymerases (RNA polymerase I, II, and III) in terms of structure, function, and transcriptional regulation. [BTL1] 17. Describe the structure and function of his operon in *Escherichia coli*. [BTL3] 18. Analyze the role of bacterial RNA polymerases in transcription mechanisms and regulation. (2x5 = 10 Weightage)